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Abstract

Connecting Simulink to ARM-Cortex based processors via Mbed to support medical
IoT applications

This Master thesis evaluates abstraction techniques at different levels of a product
development workflow for an engineer to be more effective and productive to develop
embedded real-time, connected and safety related applications. The context of this
work is oriented towards the medical devices industry by evaluating the deployment,
onto an Internet of things device, of a medical application developed in a model-
based environment using two different strategies to interact with the hardware.

A common problem to address in the medical devices industry is the analysis of an
electrocardiogram signal and the extraction of some of its properties, like the heart
rate. A model-based design approach has been taken to design and implement
a signal processing application for the analysis of such signals. After the design
phase of the algorithm, automatic code generation tools are used to generate
C/C++ code automatically out of the designed model for its deployment onto an
embedded system. At the end of the development process, the system is composed
of the three following parts: the sensors (placed on the patient) that acquire the
electrocardiogram signal in real-time, the deployed algorithm onto an ARM based
device and the data exchange to a remote location following the Internet of things
principle.

This work has been done following two hardware deployment approaches. The
first one, called bare metal, consists of connecting the algorithm directly to the
peripherals at the lowest possible level in code using firmware libraries provided
by the hardware vendor. The second one is using the Mbed hardware abstraction
layer to make Internet of things application development easier and faster. These
approaches have been evaluated against each other with regards to measurable
system properties and characteristics like: ease of use, development time, tasks
execution time, processor utilization and resources consumption.

After the delivery of this thesis, a next step for MathWorks is to have a direct support,
through Mbed, of many ARM based microprocessors from Simulink. This would
support the integration through automatic C/C++ code generation and the use of
the Mbed hardware abstraction layer by extending Simulink with a hardware support
package to work at a higher level of abstraction. For developers, the support of
Mbed for ARM based targets will provide them with common functionality of the
processors so that development and deployment can be done quickly and easily.
A Mbed hardware support package will be created with the programming ability of
more than 150 processors and boards through Mbed following a model-based design
approach with all the abstraction methods used and explained in this thesis.
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1 Introduction

1 Introduction

1.1 Motivation
Being able to quickly go from an idea down to its implementation onto a real system
to have it up and running before the competition is what is driving the fast evolution
of the technology nowadays. It has always been challenging to develop complex
systems including both innovative products and new features. However, today’s
situation can change the game. Indeed, it has never been so easy to get hardware
and software solutions that are available to everyone and at an affordable price, like
low cost hardware such as Arduino, Raspberry Pi, Beaglebone, you name it.

Engineers developing domain specific applications, that are linked to a particular
industry, are not necessary specialist in the required programming languages to
develop them. Moreover, there is a need to always be more productive and deliver
more complex products as soon as possible to shorten the time to market. The
complexity of today’s systems is at such a level that they may contain several
dozens or even hundred processors that are programmed with several million
lines of code. All this is driven by the requirements of customers, the safety
standards, the environmental regulations and the market competition. To support the
aforementioned needs, one solution is to use the Model-Based Design approach.

Model-based design (MBD), also called Model-driven engineering (MDE), is a
modeling method that allows to handle the level of complexity of embedded systems
as most of them are way too complex to be directly coded in C code for example.
MBD is a model-centric approach do develop any type of dynamic systems. Out of
the base product’s requirements, a model is derived and serves as an executable
specification that is used throughout all phases of the development process that can
be sum up as: requirements, architecture, design, implementation and integration.

1.2 Objectives
The main goal of this project is to make it easier for engineers working on complex
products, like in the medical devices industry, to create innovative Internet of things
(IoT) applications using a development platform, including software and hardware,
that abstracts the coding part of the algorithm and its interaction with the used
hardware. This is done by using MATLAB and Simulink as MBD tool on the software
side and off-the-shelf evaluation or demo boards on the hardware side, as well as an
IoT hardware abstraction layer (HAL) called Mbed supported on both sides.

Mbed is an online and open source collaborative platform managed by ARM for
engineers interested in rapid IoT device development. Mbed provides multiple
resources to speed up the development of applications such as an offline and
an online integrated development environment (IDE), a real-time operating system
(RTOS), a HAL, and many development boards from various vendors like NXP,
Renesas, STMicroelectronics and many more.
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1 Introduction

The Mbed model architecture makes its ecosystem extremely flexible and
evolutionary for embedded solutions developers. Based on the aforementioned
points, this Master thesis focuses on the following three main topics:

• The application which includes two main tasks. The first one consists of
the real-time processing of an electrocardiogram (ECG) signal to extract its
properties like the heart rate in beats per minute. The second one is to transmit
in real-time the obtained results over the Ethernet network either locally or on
the Internet for further analysis

• The driver layer which is the implementation of the low-level drivers having
direct access to the board peripherals and also accessing them through the
Mbed HAL. An objective comparison is done between both approaches based
on technical and productivity related criteria

• The system profiling that involves the comparison of both driver approaches
by analyzing specific system properties and characteristics, as well as
the comparison and discussion over the numerical results provided by the
application at the different stages of development

1.3 Context
To be able to efficiently analyze and discuss the pros and cons of using this Mbed
HAL for IoT applications in the medical devices industry using an MBD approach, it
is needed to properly define the context boundaries of a practical problem that allows
its assessment.

A common problem to solve, that encompasses all the aforementioned points, is
the processing of ECG signals. It requires real-time processing of data acquired
by hardware sensors and the extraction of relevant signal characteristics to provide
output information like the heart rate in beats per minute and its standard deviation.
Therefore, this ECG problem statement serves as the basis for the implementation
and evaluation of the Mbed HAL.

The context boundaries are not only defined by the software part of the application,
but also by the hardware that executes it. In this project, an evaluation board from
the vendor STMicroelectronics is used, as it is made of an ARM microprocessor
and it supports the Mbed HAL off-the-shelf. An extension board is connected to the
evaluation board to allow the acquisition of ECG data via physical sensors placed on
a patient.

September 20, 2021 2/95 Master Thesis.pdf
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2 State of the Art

The main goal of this Master thesis is to make it easier and quicker for engineers
working in the medical devices industry to create innovative Internet of things (IoT)
applications. Therefore, it is important to understand the current state-of-the-art
concepts for a model-based design (MBD) approach, and how it connects to the IEC
62304 reference standard which is very important for the medical devices industry.

2.1 Reference workflow
The reference workflow (2.1) is defined by the ISO 26262 standard, part 6 [1] from
the automotive industry for software development and verification processes. It
is a derivative of the IEC 61508 generic functional safety standard and is reused
in other industries for functional safety. It starts, on its left-hand side, with the
requirements for which it is required to trace them down to their code implementation
and testing; that is called forward traceability. Moreover, especially for safety related
applications, it is also important to trace the requirements backwards; this helps to
reduce unintended behaviors in the modeling and implementation phases. This full
round-tripping among the requirements is called bi-directional traceability.

The executable specification is made of models representing parts of the system
or the complete system itself. At this point, defining application-specific guidelines
and rules helps to cope with the complexity and the quality of the design. Indeed,
software engineering principles such as divide and conquer to reduce the system
complexity, low-coupling to avoid effects/impacts between components and high
cohesion within each component must be applied to models, because they are not
only nice drawings representing the system or parts of it, but are artifacts that can
already be simulated, tested and validated against functional requirements.

Once the model is configured for production code generation, code can be generated
automatically out of the design for each components. Finally, the verification of the
generated code must be done to confirm that the way it runs onto the embedded
processor provides the same results and functionality than the verified model and
does not contain any unintended or unexpected behavior.

Figure 2.1: ISO 26262 reference workflow for software development & verification processes [1]
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2.2 IEC 62304 standard
The international standard IEC 62304 [2] defines a process to produce medical
software and especially software within medical devices. This standard is approved
by both the European Union (EU) and the United States (US) regulation authorities
and can therefore be used as the basis when medical devices products need to be
certified for these two markets. The IEC 62304:2015 standard for software systems
defines three software safety classes called A, B and C. This classification represents
the risk level of harm resulting from a hazardous situation in which the software
system contributes. A software system is specified as software safety class:

(A) if the software system cannot be part of a hazardous situation; or if it can, it must
not result in an unacceptable risk after consideration of risk control measures 1

(B) if a hazardous situation can arise from a failure of software which results in
unacceptable risk after consideration of risk control measures and the resulting
possible harm is non-serious injury

(C) as for (B) except that the resulting harm is a serious injury or even death

2.2.1 IEC 62304 metrics

The metrics table (2.1) shows the MBD phases that are mapped to the processes
required by IEC 62304. Entries highlighted in green represent artifacts that can be
generated automatically out of models, like production code, test vectors and reports
by MBD tools during the design, implementation, verification and validation phases.

Table 2.1: Metrics of the IEC 62304 standard [2]
1Risk control measures: actions that are taken in response to a risk factor that has the potential to cause accident or harm
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Remark: in this project, not all green metrics from the table (2.1) are covered as
the final objective is not to certify the developed application/product. Indeed, model
and code coverage, compliance to modeling and coding standards and bi-directional
traceability with requirements are not covered. However, some of them, such as
bi-directional traceability between model and code, back to back testing, system
simulation versus code behavior and absence of run-time errors are done and
discussed when required in the corresponding sections.

2.3 Medical industry user story
To highlight how MBD is used in the medical devices industry, the user story (2.2)
shows an example of a ventilator system that had to be certified against the IEC
62304 standard introduced in §2.2.

This product has been developed by the medical consulting company IMT based
in Switzerland. It is a very complex “multiple inputs and multiple outputs” (MIMO)
system for which many parameters and properties must be handled to realize the
algorithm. Knowing that it had to be delivered as soon as possible on the market with
limited development costs, the MBD approach was used to make its development
easier, quicker and cheaper with regards to a conservative software development
approach.

As a result of this MIMO system project, the following advantages of using an MBD
approach stood out:

1) Reduce of prototypes development costs through model simulation

2) More than 156’000 lines of code were automatically generated in 15 minutes
out the top-level Simulink model

3) No bug or error in the generated code throughout the full project’s duration

4) Only two days were needed to verify, validate and test the system against the
required performance criteria as opposed to two weeks in the past for projects
of equivalent complexity

Figure 2.2: Highly complex MIMO system ventilator requiring total robustness and reliability [3]
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3 Mbed Ecosystem

Mbed is an online collaborative platform managed by ARM for engineers interested
in rapid Internet of Things (IoT) device development [4]. Mbed provides a full
development ecosystem made of the following elements:

• Online and offline software integrated development Environments (IDE)

• Open source code

• Real-time operating system (RTOS)

• Hardware abstraction layer (HAL)

• Hardware evaluation boards that are Mbed Enabled

The Mbed model architecture makes its ecosystem extremely flexible and
evolutionary for embedded solutions developers. In the Mbed layered architecture
(3.1), there are four different layers of abstraction that are called: Application, Mbed
OS, Mbed HAL, and Hardware. In such architecture, a component in one layer may
obtain services only from a layer below itself. For each layer, services are provided
through a well-defined interface that is accessed by components located in the layer
directly above it. As opposed to the AUTOSAR layered software architecture (3.2)
(that is well-known and used in the automotive industry), the Mbed one has a very
strict hierarchy that makes the dependency of one layer restricted to the one below it
only. In the case of AUTOSAR, there is always the possibility to access a backdoor
called “Complex Drivers”. It is located on the right-hand side of the AUTOSAR
layered software architecture (3.2) and it allows to bypass some layers for custom
hardware access or backward compatible implementations. However, this makes the
application hardware dependent which is exactly what Mbed wants to always avoid.
Indeed, the goal of Mbed is to be able to reuse the developed software applications,
including their hardware access through the HAL, onto any board that is compatible
with Mbed, or as they are called Mbed Enabled.

Figure 3.1: Mbed layered architecture [10]
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Figure 3.2: AUTOSAR classic simplified layered architecture [11]

Remark: in this project, the emphasis is put on the application, Mbed HAL and
hardware layers. The Mbed OS layer is out of scope as it would add too much
time and effort to implement it and have it supported in MATLAB and Simulink.
However, the Mbed OS is still mentioned in §3.1 to get the big picture on Mbed
and its ecosystem.

3.1 Operating System
The Mbed OS has been especially designed for IoT applications. As for the operating
system FreeRTOS, Mbed OS is also an open-source OS for embedded systems. It
has been designed and developed to mainly run on ARM Cortex-M microcontrollers.
This allows developers to quickly develop IoT applications using low-cost hardware.

Here are the most important Mbed OS features:

• As Mbed is designed for real-time systems, performed functions must not only
give correct results, but they must provide them at the right time. That is why
the software executes in real-time and supports predictable execution, multi-
tasking, tasks prioritization, shared resources management via Semaphore or
Mutex, queues, timers and Interrupt Service Routines (ISR)

• Fully available open source code that can be used for private, academic or
commercial projects

• Modular components as represented in the Mbed layered architecture (3.1)
allowing to only include what is required for the designed application

• Drivers to support common available peripherals such as digital and analog
inputs and outputs, timers, various communication protocols and so on

• Data security and encryption, as processed data travel onto networks

Remark: developing the integration and the support of the Mbed OS for MATLAB
and Simulink could be a topic for another Master thesis to continue and augment the
work done in this project. As the focus is on the Mbed HAL, the deployment of the
signal processing algorithm is done bare metal without the Mbed OS.

September 20, 2021 7/95 Master Thesis.pdf



3 Mbed Ecosystem

3.2 Hardware Abstraction Layer
One of the main idea of Mbed is to have the application software that is hardware
agnostics. This way, it is easy to port an application to another Mbed hardware
board without modifying it. It is only needed to compile and link it against the new
target. To accomplish this, Mbed provides an Mbed library that contains several
abstraction layers and application programming interfaces (APIs) with respect to the
microcontroller unit (MCU).

Figure 3.3: Overview of the Mbed software layers architecture [12]

In the Mbed software layers architecture(3.3), there are three distinct sets of layers:
the blue one which is independent from the MCU, the yellow one that depends on
the MCU, and the green one representing the MCU hardware registers.

The green and yellow groups are out-of-scope in this project as they are hardware
related. On the other hand, a very important topic that is being discussed in
this project is the comparison between connecting the application to hardware
peripherals by using the Mbed HAL and directly connecting it to the low-level
hardware drivers. In the first implementation, that uses Mbed, the mbed API as
well as the mbed HAL API are used as mediators to connect to the hardware,
abstracting to the user most of hardware specifics. The mbed common layer
implements functionality, such as data structures and functions that are linked to
common peripherals and communication protocols.

The mbed API layer provides peripheral specific C++ classes that contain their
related methods and properties. It nicely encapsulates and groups by peripherals
low-level C functions that are defined in the mbed HAL API layer. At the end, the
user has the choice between accessing the API by using C++ or C code. Having
this flexibility of implementation is key for embedded systems as both programming
languages are used a lot for embedded applications. As shown in the graph (3.4), it
is interesting to notice that C code is still used at least twice more than C++ code for
embedded systems in 2020.
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Figure 3.4: Trend in programming embedded systems in C or C++ [13]

3.2.1 Mbed microcontroller library

The Mbed library has been built in a way that each group or type of peripherals, like
digital I/O’s, analog I/O’s, communication protocols, interrupts and so on are defined
as separated modules (made of one header and one source files each). As the
coding pattern is the same for each module, a detailed description is given in this
section for the digital I/O’s module, but not for the others.

In the mbed API C++ code (3.5) it is possible to look at the definition of the digital I/O’s
class including its methods and properties. The class named DigitalInOut is made
of two constructors; the first one only having the name of the digital pin as input
argument, and the second one also has the pin direction (in or out), the pin mode
(pull-up, pull-down or high-impedance), and its default value (0 or 1) as additional
input arguments. Then, two methods are defined to write data to and read data from
a specific pin. Two methods are also available to change the direction of a GPIO pin
and one method can change its mode. Finally, one method is available to check if
the pin is physically connected to the MCU or if it is not connected (1 or 0).
There is one protected property defined which is a structure called gpio_t that
contains all needed information about a digital I/O pin to map it to its corresponding
low-level hardware description.

In the mbed HAL API and mbed common C code (3.6) there are, in the first half of
the code, the function prototypes that correspond to the functions called within the
methods defined in the mbed API C++ code (3.5). In the second half of the code,
there are the function prototypes belonging to the common API that are called behind
the scene and not directly used by the application developer.

Remark: some comments within the mbed MCU independent library files have been
simplified in the C/C++ code shown in (3.5) and (3.6) so that the full API modules can
be read on one single page each.
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/* mbed Microcontroller Library */

#include "platform/platform.h"

#include "hal/gpio_api.h"

namespace mbed {

/* A digital input/output, used for setting or reading a bi-directional pin */

class DigitalInOut {

public:

/* Create a DigitalInOut connected to the specified pin */

DigitalInOut(PinName pin): gpio() {

gpio_init_in(&gpio,pin);

}

/* Create a DigitalInOut connected to the specified pin */

DigitalInOut(PinName pin,PinDirection direction,PinMode mode,int value): gpio() {

gpio_init_inout(&gpio,pin,direction,mode,value);

}

/* Set the output, specified as 0 or 1 (int) */

void write(int value) {

gpio_write(&gpio,value);

}

/* Return the output setting, represented as 0 or 1 (int) */

int read() {

return gpio_read(&gpio);

}

/* Set as an output */

void output() {

gpio_dir(&gpio,PIN_OUTPUT);

}

/* Set as an input */

void input() {

gpio_dir(&gpio,PIN_INPUT);

}

/* Set the input pin mode */

void mode(PinMode pull) {

gpio_mode(&gpio,pull);

}

/* Return the output setting, represented as 0 or 1 (int) */

int is_connected() {

return gpio_is_connected(&gpio);

}

/* A shorthand for write() */

DigitalInOut &operator= (int value) {

write(value);

return *this;

}

/* A shorthand for write() using the assignment operator which copies the

* state from the DigitalInOut argument */

DigitalInOut &operator= (DigitalInOut &rhs) {

write(rhs.read());

return *this;

}

/* A shorthand for read() */

operator int() {

return read();

}

protected:

gpio_t gpio;

};

} // namespace mbed

Figure 3.5: Mbed API for digital I/O’s
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/* mbed Microcontroller Library Hal */

#include <stdint.h>

#include "device.h"

#include "pinmap.h"

/* hal_gpio GPIO HAL function */

/* Set the given pin as GPIO */

uint32_t gpio_set(PinName pin);

/* Checks if gpio object is connected (pin was not initialized with NC) */

int gpio_is_connected(const gpio_t *obj);

/* Initialize the GPIO pin */

void gpio_init(gpio_t *obj, PinName pin);

/* Set the input pin mode */

void gpio_mode(gpio_t *obj, PinMode mode);

/* Set the pin direction */

void gpio_dir(gpio_t *obj, PinDirection direction);

/* Set the output value */

void gpio_write(gpio_t *obj, int value);

/* Read the input value */

int gpio_read(gpio_t *obj);

// The following functions are generic and implemented in the common gpio.c file

/* Init the input pin and set mode to PullDefault */

void gpio_init_in(gpio_t *gpio, PinName pin);

/* Init the input pin and set the mode */

void gpio_init_in_ex(gpio_t *gpio, PinName pin, PinMode mode);

/* Init the output pin as an output, with predefined output value 0 */

void gpio_init_out(gpio_t *gpio, PinName pin);

/* Init the pin as an output and set the output value */

void gpio_init_out_ex(gpio_t *gpio, PinName pin, int value);

/* Init the pin to be in/out */

void gpio_init_inout(gpio_t *gpio, PinName pin, PinDirection direction, PinMode mode,

int value);

/** Get the pins that support all GPIO tests

*

* Return a PinMap array of pins that support GPIO. The

* array is terminated with {NC, NC, 0}.

*

* Targets should override the weak implementation of this

* function to provide the actual pinmap for GPIO testing.

**/

const PinMap *gpio_pinmap(void);

}

Figure 3.6: Mbed HAL and common API for digital I/O’s

In the C++ code (3.5) and C code (3.6), the structure and relationship between layers
within the Mbed library is clearly represented. C++ methods from the mbed API
access either the C functions from the mbed common layer or from the mbed HAL
API. For example, the C++ method read() in (3.5) calls the C function gpio_read().
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3.3 Hardware
The hardware part of the Mbed ecosystem is very important as, at the end, the
developed software applications have to run somewhere. A lot of development
boards have been realized by various vendors like for example: NXP, Renesas,
STMicroelectronics and many more as shown here: https://os.mbed.com/platforms.

What tells the application developer if a board supports Mbed is when it has the
Mbed Enabled tag on it. This means that the vendor of an Mbed Enabled board
has created the MCU dependent layers that are represented in the software layers
architecture (3.3), and especially the Mbed HAL implementation one. This is indeed
at this level that an application can be ported from one target to another.

3.3.1 Standard pin names

To be able to reuse a developed application onto different hardware targets, it is
mandatory that the peripheral identifiers are the same between those. For example,
if data are coming in via an external sensor, this one is connected to an analog pin
and then forwarded to an Analog-to-Digital Converter (ADC) that will discretized the
analog signal. Therefore, it is of paramount importance that the name or identifier of
the analog pin is the same between all Mbed Enabled hardware systems.

In Mbed, two groups of standard pin names have been defined; the Generic Pin
Names and Arduino Uno Pin Names.
The Generic Pin Names group defines names for the following default peripherals:

• LED pins: defined as LEDx (e.g. LED0, LED1)

• Button pins: defined as BUTTONx (e.g. BUTTON0, BUTTON1)

• UART 1 pins: defined as CONSOLE_TX and CONSOLE_RX

Every Mbed board includes a serial interface to the host PC, with CONSOLE_TX to
send data to the host and CONSOLE_RX to receive data from the host.

The Arduino Uno Pin Names group, for which the connector is physically compatible
with the Arduino Uno one, defines names for the peripherals connected through the
Arduino Uno connector:

• Digital pins: defined as Dxx (from D0 to D15)

• Analog pins: defined as Ax (from A0 to A5)

• UART pins: defined as TX, RX and respectively mapped to D0, D1

• SPI 2 pins: defined as CS, MOSI, MISO, SCK and respectively mapped to D10,
D11, D12, D13

• I2C 3 pins: defined as SDA, SCL and respectively mapped to D14, D15

There are other digital pins (Dxx) that may provide particular functionality, like PWM
and timers. However, the application should not assume the same behavior for these
pins on all Mbed Enabled targets, as these are not part of the standard pins.

1UART = Universal Asynchronous Receiver-Transmitter
2SPI = Serial Peripheral Interface
3I2C = Inter-Integrated Circuit
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A detailed view of the relationship between the Arduino Uno pins and their
functionality is provided in the diagram (3.7).

Figure 3.7: Arduino Uno pin mapping to functionality [14]

4 Hardware System

For this Master thesis, a set of hardware components had to be selected in order to
fulfill the mandatory requirements of the application that are:

• use of a low-cost hardware platform

• use of an Mbed Enabled development board

• connect to analog sensors

• connect to the Internet of things (IoT)

• use off-the-shelf available hardware with minimum customization

• use a board that is already supported by a hardware support package (HSP)
in MATLAB and Simulink. This means that the compiled and linked code can be
downloaded to the board via a micro-USB cable directly from Simulink and also
that data can be exchanged between the host computer and the board while it
is executing the code. This is discussed in details at the §6.6.2

In this project, the goal is to focus more on the software part and its integration
with hardware, rather than on the hardware part itself. Therefore, the custom work
related to the hardware system has been constrained to its minimum. Basically, it
has consisted in stacking two electronic boards together and adding a push button
to it as shown in the photo of the hardware system (4.1).
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Figure 4.1: Hardware system for the electrocardiogram (ECG) application

The first mandatory requirement mentioned at the beginning of the §4 is about using
a low-cost hardware platform. In the table (4.1) the cost of the needed hardware
components is summarized. The values are in euros without the value added tax
(VAT) as it varies between countries.

Hardware component Price in C (no VAT) Shipping cost in C (no VAT)

Evaluation board 30 8
Extension board 20 6

Sensors 10 6
30 electrodes 30 6
Push button 1 6

Table 4.1: Costs of the needed hardware items

Based on the values provided by the table (4.1), an overall cost estimation can be
calculated. Knowing that the evaluation board comes from one vendor, and the four
other items from another one, the shipping costs must not be counted for each entry,
but for only once per vendor. The names of the parts vendors are not mentioned
as there are many of them providing these items and they may differ based on the
country the end user is located. The total cost is calculated in the expression (4.1).

TotalCost = (30 + 8) + (20 + 10 + 30 + 1 + 6) = 105 C (no VAT) (4.1)

For example, if the purchase is done from Germany, the TotalCost is then multiplied
by a VAT factor of 19% in 2021. The FinalCost is given by the expression (4.2).

FinalCost = 105 · 1.19 = 124.95 ∼= 125 C (4.2)

At the end, the final cost of hardware for the end user is of 125 C, and he or she only
has to solder one push button (one pin to the ground, one pin to the 3.3 Vcc, and
one pin to the D6 I/O on the Arduino Uno connector) as shown in the figure (4.1).
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4.1 Evaluation board
The main development board that is being used for this project is the STM32 Nucleo-
F767ZI from STMicroelectronics [15]. It has been selected, because it fulfills all the
requirements defined in the §4:

• it is Mbed Enabled

• it has the standard Arduino Uno Revision 3 connector that provides analog
signals connectivity

• it has an Ethernet connector to send data over IT networks

• the board is fully ready for the application and does not need customization

• this board is already part of an STM32 HSP in MATLAB and Simulink and can
be directly connected to the integrated development environment (IDE)

Figure 4.2: STM32 Nucleo-F767ZI development board [15]

The STM32 Nucleo-F767ZI development board (4.2) can be connected to a host
computer and programmed using MATLAB and Simulink via the micro-USB port
that is located on top of the board. The Arduino Uno connectors, located on both
sides, provide access to digital and analog I/O’s. For the IoT part, the main board
does not have any wireless module. Such modules exist, as extension board, and
can be plugged-in the main board. However, there is an Ethernet port, at the
bottom right, that is available and is used to exchange data over IT networks. The
software application uses several packet communication protocols such as UDP and
TCP/IP for a local private network and a Channel-Based Communication protocol
over Internet for the Cloud that can be routed through this Ethernet port.
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4.1.1 Main characteristics of the microprocessor

There are three family of ARM Cortex processors:

• A for Application processor cores optimized for high performance systems

• R for Real-time application cores optimized for hard real-time systems

• M for Microcontroller cores optimized for low-power embedded applications

The STM32 Nucleo-F767ZI development board is made of an ARM Cortex-M7 32bit
microprocessor (MCU) having the following main characteristics [16]:

• Core: CPU frequency up to 216 MHz with an L1-cache of 16 Kbytes

• Memory: 2 Mbytes of Flash and 512 Kbytes of RAM

• Energy: optimized for low energy integrated circuits

• Power supply: dedicated USB power

• Peripherals: 168 configurable I/O’s, 3x12bit Analog-to-Digital Converter (ADC),
2x12bit Digital-to-Analog Converter (DAC), 16-stream Direct Memory Access
(DMA), 18 timers

• Connectivity and communication interfaces: JTAG, I2C, UART, and many more

4.2 Extension board
The extension board that is being used for this project is the Shield-EKG-EMG from
Olimex [18]. This board has been especially designed, with specific amplifiers and
filters, to measure what are called biosignals such as electrocardiogram (ECG) and
electromyogram (EMG), which is exactly what is needed for this project as ECG
signals are measured.

Figure 4.3: Olimex EKG-EMG Shield [18]
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The Olimex extension board can be connected to a main board like the one shown
in (4.2) via the Arduino Uno connectors. Analog signals are acquired by the Jack
connector and recomposed before being routed to the main board.

4.2.1 Schematic of the analog path

The stages of the analog path are shown by the schematics (4.4), (4.5), and (4.6).
For clarity, they have been split into the following three stages: signal acquisition,
variable gain, and pre-emphasis.
The first stage (4.4) is made of the jack connector, on the left-hand side, that gets two
analog channels (Left and Right) as inputs and the ground (DRL). It then combines
the signals to provide the Lead I ECG signal and amplifies it by a factor of 10.
The second stage (4.5) allows to amplify the signal even more by using a variable
regulated gain. In this project, it has been set to its maximal value which gives an
amplification factor of 15. If this value is changed, it has a direct impact on the peaks
detection threshold within the post-processing stage of the ECG software application
described at §6.2.1.
The third stage (4.6) is made of a pre-emphasis filter of third order that increases the
amplitude of low frequencies, that are below 40 Hz, by a factor of 3.56.

Figure 4.4: Olimex EKG-EMG Shield signal acquisition, stage 1 [18]

Figure 4.5: Olimex EKG-EMG Shield variable gain, stage 2 [18]
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Figure 4.6: Olimex EKG-EMG Shield pre-emphasis, stage 3 [18]

At the end of the third stage (4.6), the Lead I ECG signal is routed towards the
standard Arduino Uno pin A0 as seen in the §3.3.1. An ADC is connected to this
pin transitioning from the continuous time domain to the discrete time domain and
allowing to do digital signal processing within the MCU.

4.3 Sensors
The sensors are three passive electrodes that can be connected to the extension
board (4.3) via a jack connector.

Figure 4.7: Olimex SHIELD-EKG-EMG-PRO Sensors

The electrodes shown in (4.7) are marked with L for the Left arm, R for the Right
arm, and D for the Driven Right Leg (DRL) ground.

Remark: to measure a correct input signal, the electrodes must be placed on the
patient as indicated in the Einthoven’s triangle representation (6.2).
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5 Model-Based Design

Nowadays, very complex embedded systems are made of several dozens or even
hundred processors that are programmed with several million lines of code making
them very difficult to program by hand. For example, a magnetic resonance imaging
(MRI) machine contains around ten million lines of code [6]. The Model-Based
Design approach (MBD) is a modelling method that allows to handle such level of
complexity. In the literature, it is also called Model-Driven Engineering (MDE).

5.1 MBD workflow
The MBD workflow (5.1) starts with the project’s research and requirements on
top. At this stage, there is a need to gather, elicit, negotiate over the requirements
before going to the design phase. With an MBD approach, it is easier to iterate
between the design and the requirements to improve their correctness and refine the
specifications for each components.

At the design level, also called the executable specification, the full system can be
implemented in components with its external stimuli for testing. This way, the system
can already be tested earlier in the development process which is a considerable
advantage, as in practice, real system prototypes often are not easily available and
are usually incomplete and expensive to build; thus preventing rapid iteration or
system level testing early on.

Figure 5.1: MBD Workflow [7]
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In the implementation phase, code can be generated automatically out of the design
for each component and reused onto embedded systems or real-time machines.
The full system can already be tested prior to its final integration without using costly
hardware test benches. This allows to detect the majority of the errors prior to the
final integration and test phases for which fixing errors is expensive.

With an MBD approach for the medical devices industry (as followed in [5]), the
testing, verification and validation phases are present all along the workflow to help
detecting errors very early in the process, and therefore allowing to quickly design
safer products with well understood and tested performance.

5.2 Mapping to the V-model
In the medical devices industry, the V-model is the reference development process
for products development. It can be used following a waterfall or agile (with iterative
sprints) development methodology.

Figure 5.2: V-model development process

The V-model process (5.2) starts with the development phases on the left-hand side.
It is made of the gathering, elicitation and negotiation steps over the requirements
on top and it goes down through the design of the system and its decomposition into
design units and finally code units. On the right-hand side, it goes up with the testing
and integration phases. It starts with the testing of each units and their validation.
Then it goes through the integration of these units and their testing until the validation
of the system is correct.

Being able to map the MBD workflow (5.1) to the V-model (5.2) is key to see how the
MBD approach can fit such a product development process. The mapping of the two,
done in the figure (5.3), highlights how the different phases of both representations
match or align among each other. Basically, the test and verification phase that is
all along the MBD workflow maps to the right-hand side of the V-model. The other
phases of the MBD workflow can be mapped to their corresponding phases on the
left-hand side of the V-model at both, the system and unit levels.
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Figure 5.3: Mapping of the MBD workflow to the V-model development process

Remark: in the medical IEC 62304 standard [2], it is requested to decompose the
system into separate units having a clear definitions of their interfaces. As in the
ECG signal processing chain detailed in the §6.2.1 there are not that many complex
components with formally defined specifications and also no clear interface contracts
for them, this aspect requested by the standard is not applied. Indeed, this would only
add a new abstraction layer to the problem to solve which is not meaningful in this
project and this is also not the goal of this Master thesis.

5.3 Software tools used in this project
As mentioned in §1, one of the main goal of this project is to allow engineers and
developers to be able to design, test, implement and deploy onto an Mbed Enabled
hardware their algorithms directly from Simulink. This way, the MBD approach can be
used abstracting the development complexity at many different levels like programing
language, hardware drivers and connectivity, as well as the testing, verification and
validation of the application. To do this, the following MathWorks tools have been
used:

1) Integrated Development Environment

• MATLAB as the language of technical computing (LTC) and main platform

• Simulink as the Design Automation (DA) and dynamic system modelling
platform

2) Domain Specific Libraries

• Signal Processing and DSP System Toolboxes

• Wavelet Toolbox (optional)

3) Ethernet Communication Layer

• Instrument Control Toolbox to manage UDP and TCP/IP communication
protocols for data exchange on a local network
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4) Automatic Code Generation

• MATLAB Coder to generate C/C++ code out of MATLAB code

• Simulink Coder to generate C/C++ code out of Simulink models

• Embedded Coder to optimize the generated code for embedded systems

5) Hardware Integration

• Hardware Support Package (HSP) to directly connect to the C/C++ code
generation tools providing capabilities such as board connectivity, Code
Replacement Libraries (CRL) and low-level drivers implementation to
control hardware peripherals

5.4 Competitor tools and solutions
The analysis of the competitors is based upon three main abstraction criteria:

• Model-Based Design vs handwritten code

• Mbed support or not

• Code generation or not

Based on these criteria, the competitors table (5.1) has been setup and populated
with the main competitors (open source or commercial) present on the market. It
uses the following ratings for each criterion:

• “++” = good support

• “+” = partial support

• “±” = partial support with a different criterion’s approach

• “o” = no support

Main competitors Model-Based Mbed support Code generation

Mbed Online Compiler, and
Mbed Studio and CLI

o ++ +

LabVIEW from NI ± ± +

Scilab and Xcos + + +

ANSYS and Scade ++ o ++

MATLAB and Simulink ++ ++ ++

Table 5.1: Assessment of competitors to MATLAB and Simulink

As Mbed is C/C++ based, there already exists some solutions that are available
on the market to develop Internet of things (IoT) applications using this hardware
abstraction layer (HAL). Many of them are based on handwritten code, but are also
using frameworks to generate part of the C/C++ code automatically to facilitate and
speed-up the development of IoT applications. On the Arm Mbed official website the
following three Integrated Development Environments (IDEs) are available to author
and reuse C/C++ source code: Mbed Online Compiler, Mbed Studio, and Mbed CLI
(command Line tool for Mbed). All of them can be used on Windows, Mac and Linux
platforms. More information are provided in §5.4.1 and §5.4.2 about these IDEs.
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These are not the only solutions when end users work at the code level. The
following other IDEs are also available and do support Mbed as well: Keil uVision
(ARM official), IAR Embedded Workbench, Atollic TrueSTUDIO (Eclipse based).
The concepts of these IDEs are similar to the Arm official ones except that they
are commercial ones.

Regarding competitors following an MBD approach, there are third party blocksets
that connect to Simulink and the Embedded Coder. These are developed by
providers such as Aimagin Waijung or ST32MAT/TARGET. Both of them rely on
MATLAB, Simulink and the Embedded Coder products. They are simply third party
toolboxes that can be used like any other MathWorks toolboxes for simulation and/or
C/C++ code generation.

There is also LabVIEW from National Instruments (NI) that can do Remote
Procedure Call (RPC) from a computer running a LabVIEW model and
communicating with an Mbed Enabled hardware via a serial or Ethernet connection
called respectively SerialRPC or HTTPRPC to execute subroutines on it. To achieve
this, LabVIEW Virtual Instruments (VI) have been created to mirror the Mbed API. A
VI is a basic block in LabVIEW similar to what subsystems are in Simulink. However,
the LabVIEW model is not deployed onto the embedded system, but it connects to
the target and exchanges data via a communication channel. This workflow does not
follow the MBD approach as it is defined in §5 and is therefore not further detailed.

One of the closest available competitor of MATLAB and Simulink following an MBD
approach and partially supporting Mbed is the Scilab platform and its extension
called Xcos. The former provides the computation engine like MATLAB does and the
latter is a dynamic systems modeler and simulator in discrete and continuous time
domains similar to Simulink. Scilab and Xcos are parts of an open source solution.
More information on their usage with regards to Mbed are provided in the §5.4.3.

Finally, there is the Ansys SCADE Suite which is a model-based development
environment for reliable embedded software. It can generate C and Ada code from
SCADE models that can be used for certification against some industry safety related
standards. However, there is no Mbed support at all from SCADE and that is why it
is not further detailed.

5.4.1 Mbed Online Compiler

The online IDE for Mbed (5.4) can be accessed for free as soon as an Mbed Enabled
board is purchased, like the STM32 Nucleo-F767ZI (4.2). With such a board, the
required license key is directly embedded onto the hardware to make its activation
easier for the end user who just needs to create an online account on the login page
and can then use the Mbed Online IDE to develop, compile and link its application.

With the Mbed Online IDE, once the binary file is generated for the desired target,
it is automatically downloaded into the default download location locally on the end
user computer. When the board is connected to the computer over USB, it appears
on the computer as a removable storage. The user just has to drag and drop the
binary file from the download folder to the root folder of the removable drive and this
programs the board automatically which is very easy and convenient to use.
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Figure 5.4: Mbed Online IDE

5.4.2 Mbed Studio and CLI

The Mbed Studio and CLI IDE for Mbed can also be accessed for free in the same
condition as described at the beginning of §5.4.1. There is a need to be connected
to the Internet for the first login to go through the activation phase. After this, both of
them can be used offline, except for additional functionality, like version control or IoT
data management for example. The combination of these two tools provides similar
services and experience to what very well-known C/C++ IDEs like Visual Studio or
Eclipse do provide.

5.4.3 Scilab and Xcos with Mbed

There are lite hardware support packages (HSP) that are available for Xcos. They
follow the same concepts as the ones available with the Embedded Coder toolbox
for MATLAB and Simulink, but they are much more limited.

Figure 5.5: Mbed support example from Scilab/Xcos for the Arduino platform [8]
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The Mbed support for digital and analog read and write functionality is only available
out of the Arduino HSP and not for other platforms. In the example (5.5) models have
been designed to do a digital write and an analog read using Mbed. Such hardware
support is being provided by an individual contributor and can be found here [8].

There is also an HSP for some STM32 targets, but without the Mbed support, and
the MBD workflow is not fully automated as it is depicted in the diagram (5.5). In
this case, the blocks configuration must be done at the low-level hardware using
the STM32CubeIDE development environment, requiring the end user to have deep
technical knowledge about the used embedded target. More info can be found here
[9].

Figure 5.6: HSP for STM32 targets from Scilab/Xcos [9]

5.4.4 Observations on competition

With the aforementioned IDEs, they definitely provide an added value when working
at the source code level. It is very efficient to quickly deploy a short algorithm onto the
target. However, this is true when the end user is a software developer or a software
engineer who is familiar and has experience with C/C++ programing language and
embedded systems specifics. For an engineer working at the domain and algorithmic
levels, this is not the most efficient way to do rapid prototyping and to test on the
hardware what has been designed. Also, when it comes to tuning and maintaining
the code, this can become very complicated and time consuming. This is where
MBD can help a lot.

The only alternative to MATLAB and Simulink with regards to the MBD approach and
the support of Mbed is provided by Scilab and Xcos. However, the Mbed support is
very limited and only very basic applications could be done. The implementation of a
complete algorithm to process electrocardiogram (ECG) signals and its deployment
onto an embedded system seems to be extremely difficult to realize with such IDE.

As summarized in the competitors table (5.1) there are other good MBD solutions,
like LabVIEW and ANSYS Scade, but the main problem is that they respectively lack
deployment capabilities and Mbed support which is problematic to quickly develop
an Mbed related IoT application.

Based on this analysis of competitor tools and solutions, the conclusion is that for
an MBD approach, only MATLAB and Simulink can be used to develop, deploy and
test an application in a professional way and without requesting the end user to be a
hardware and/or software expert.
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6 Application

In §1 and §4, the used application and its objectives has been briefly introduced.
In this Master thesis, the application part is one of the most important because it
provides the context boundaries and specifications of the project for which the main
goal is to implement, compare and profile the Mbed Hardware Abstraction Layer
(HAL) with respect to the low-level implementation of the drivers.

In §3, it is stressed that Mbed has been especially designed for rapid Internet of
things (IoT) device development and to abstract developed applications from the
used hardware and its complexity. Fast development, IoT, and abstraction are the
keywords here. Due to the pandemic situation that happened in 2020 and 2021,
the engineers working in the medical devices industry need to be more effective
and productive to quickly develop embedded real-time, connected and safety related
applications. This supports the biggest trend in this industry which is even called the
Internet of medical things (IoMT).

Therefore, the focus of the application has been put on the development of an
electrocardiogram (ECG) algorithm which is a common problem to solve in the
medical devices industry and that can be used to support the aforementioned points.

6.1 Electrocardiogram basic theory
An ECG is a measure that checks how the human heart is behaving by looking at its
electrical activity. An electrical impulse or wave travels through the heart with each
heartbeat to produce a train of the following normal sinus rhythm one (6.1).

Figure 6.1: Normal sinus rhythm impulse [19]
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When electrodes are used to measure a single-lead ECG, they must be placed
at the right locations on the patient’s body following the Einthoven’s triangle (6.2).
This triangle represents three differential measurements of electrical signals that are
captured by the electrodes and sent to the data acquisition hardware described in §4
to be recombined into one single ECG signal.

Figure 6.2: Einthoven’s triangle [20]

6.2 Electrocardiogram problem formulation
In this project, several reference ECG signals have been acquired by using a smart
watch with an optical heart sensor that provides a signal like the one depicted in the
example of a captured ECG signal (6.3). This is a typical measurement of an ECG
signal taken between the right and left arms following the tiangle’s technique (6.2).

Figure 6.3: Example of a captured ECG signal with an optical heart sensor from a smart watch

Ten reference measurements have been taken and transmitted to a smartphone,
before being forwarded to a computer as a comma-separated value (CSV) file (6.4).
They serve as test signals for the algorithm implementation in §6.4, §6.5, and §6.6.
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Figure 6.4: Export of data into a CSV file

By collecting and analyzing an ECG signal (6.3), it is possible to extract several
information like: the heart rate (distance between two similar and consecutive
peaks), the shape of the electrical activity to see if it is normal or irregular
(arrhythmia), or hidden heart diseases for example.

6.2.1 Signal processing chain

From a signal processing point of view, an ECG wave is very interesting to study and
process, because it is made of both: low frequency and high frequency components.
In this project, the goal of the application is to extract the heart rate or in other words
to determine the distance between two consecutive high frequency R peaks (cf.
Normal sinus rhythm impulse (6.1)).

To get the number of beats per minutes (BPM) out of an ECG captured on a patient,
a one minute measurement can be done and the high frequency peaks can be
manually counted. To speed it up and still have an accurate result, a 30 seconds
measurement can be realized. The sum of the counted peaks is then multiplied by
two to get the final BPM value.

The goal of the application software is to automate the process measuring the BPM.
It first filters the ECG signal to separate and extract the high frequency peaks and
then counts the number of peaks and compute the time difference between every
pair of consecutive peaks. Based on this, it is then possible to come up with the
signal processing chain represented in the block diagram (6.5).
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Figure 6.5: Signal processing chain to extract the heart rate of an ECG signal

Out of the diagram (6.5), it is possible to identify two distinct sections; the first one
that goes from the input sensors to the output of the “Lowpass Digital Filter” block,
which represents the pre-processing part, and the second section that goes from
the input of the “Peaks Extraction” block to the output of the processing chain which
represents the post-processing part. The first stage focuses more on filtering the
ECG signal and the second one more on computing the needed statistics.

The aim of the pre-processing stage is to almost vanish the low frequency
components to only keep the high frequency peaks. That is why a “Bandpass Digital
Filter” subsystem is used. The coefficients of this filter must be tuned precisely for
this first stage to work correctly. The “Rectifier” subsystem is there to get the absolute
value of the signal and the “Lowpass Digital Filter” subsystem integrates over the
processed signal. The “Pre-emphasis Analog Filter” located on the extension board
(4.3) amplifies the frequency components of interest in the acquired ECG signal to
reduce the effect of potential higher ones.

The post-processing stage must then distinguish between global maxima
representing the high frequency peaks and local maxima that are some remains
of the filtering process. This is done by the “Maxima Extraction” subsystem that has
a threshold parameter that must be tuned precisely so that the global maxima are
identified correctly. Once these maxima have been extracted, the “Desired Time
Info” subsystem computes the time difference in seconds between each pair of
consecutive peaks and provides results in the desired BPM format.

6.2.2 Sampling frequency

The heart rate values depend on the age and gender of human beings. In general,
when there is a normal sinus rhythm, the maximal possible value for an athlete is of
220 BPM. In theory, the maximum possible heart rate for a human being is of 300
BPM. A value that would be over this theoretical one would mean that the heart is
not following a normal sinus rhythm and that the patient life is in severe danger.
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Based on these considerations, it has been decided for this project, to have the
system being able to measure a heart rate within the range of 0 to 255 BPM. An
advantage of this choice is that BPM values can be encoded as unsigned integer of
8bits. Moreover, if the maximal value of 255 BPM is reached, this highlights the fact
that it is abnormal and the patient needs urgent assistance.

Following the Nyquist frequency principle for a digital system, the sampling
frequency (FS) of the digital part of the signal processing chain is twice this value as
defined in the expression (6.1).

FS = 2 · 255 = 510 Hz, for a measurement range of [0; 255] Hz (6.1)

6.3 System parameters
The first stage of the signal processing chain diagram (6.5) is composed of three
filters; an analog one and two digital ones. In order to find out for each of them their
right order and coefficients, it is necessary to analyze the frequency components of
one raw ECG signal. A spectrogram analysis of such a signal could be done, but it
would have the disadvantage that the localization of events would be either accurate
in the time domain or in the frequency domain, but not in both domains at the same
time. A spectrogram does not offer good time-localization of frequency components.
To overcome this drawback, for real world signals like an ECG one, the wavelet
transform can be used. It offers superior time-localization of frequency components
and allows an easier extraction of particular features in the signal. By using the
MATLAB Wavelet Toolbox it is straight forward to compute a continuous wavelet
transform onto an unidimensional sampled signal and get the three dimensional
representation of the wavelet spectrogram (6.6).

Figure 6.6: Wavelet spectrogram of one of the ten recorded ECG signal

The resolution of the wavelet transform (6.6) allows to precisely locate events in
time and frequency domains like the one encompassed by the red vertical rectangle.
Simply by counting the events in the wavelet spectrogram (35 in this case) and by
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multiplying it by 2 as the measurement’s duration is of 30 seconds, it can be found
that, for this particular signal, there is a heart rate of 70 BPM.
The green line that has been added to the wavelet spectrogram shows the average
maximal frequency of events which are at 40 Hz. This is the cut-off frequency that
can be used for the pre-emphasis analog filter to increase the amplitude of the
frequency components up-to 40 Hz. Moreover, red separator lines have also been
drawn to separate the low-level frequency components of the ECG that are between
1 and 10 Hz from the high-level frequency ones that go from 10 up-to 100 Hz.
As mentioned in §6.2.1, the goal is to extract the high frequency peaks and then
determine the distance between all consecutive ones. Therefore, these values of 10
and 100 Hz can be used as the two cut-off frequencies for the digital band-pass filter.
The digital low-pass filter represented in the signal processing chain (6.5) behaves
as an integrator over the pre-processed signal; it extracts the envelope of its input
signal. By looking at the wavelet spectrogram, it can be seen that the R peaks
events starting frequency is around 8 Hz. This indicates that the cut-off frequency of
the digital low-pass filter can be set at 10 Hz.

The table 6.1 summarizes the filters parameters to use in the signal processing chain.

Filter type Cut-off frequency 1 Cut-off frequency 2 Filter order

Pre-emphasis analog 40 Hz - 3
Band-pass digital 10 Hz 100 Hz 4
Low-pass digital 10 Hz - 4

Table 6.1: Filters parameters for the signal processing chain

The order of the filters, and the given data sampling rate FS, determine the required
processing power. For such ECG signals, filters of fourth order are a very good
compromise between quality and performance. The order of the pre-emphasis
analog filter is of 3, because the data acquisition board mentioned in §4.2.1 has
been designed this way.

For the second stage of the signal processing chain represented in the diagram (6.5)
there is basically one parameter to look at that needs to be tuned correctly. This is
the threshold that will separate global from local maxima. At this point, it is difficult to
guess what is its correct value, but this is discussed in §6.4.

6.4 First investigations in MATLAB
In this section, the goal is to quickly check the feasibility of the sketched algorithm
(6.5) by using MATLAB. The reference measurements acquired from the smart
watch and transferred to a CSV file as described in the figure (6.4) are brought
into MATLAB, converted into usable values/numbers, passed through the full signal
processing chain and the provided results are analyzed.

6.4.1 Import and convert measured data

The data are organized as a matrix of five columns and N lines. The goal is to create
a table with column headers and data out of it as shown in the figure (6.7).
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Moreover, numerical data have to be converted into floating point double precision
data type so that mathematical operations can be applied on them.

Figure 6.7: Bringing external CSV data into MATLAB as a table

The easiest way to get the data in the format described by the figure (6.7) is to use
the MATLAB function named readtable(filename,opts). It has two input arguments;
the first one which is the name of the file to import data from, like ’Measurements.csv’
in this case, and the second one for which data import options can be specified, like
which columns to select or the data type of each column’s values for example. Once
the import process is complete, it results in the table (6.2). At this point, users can
select which row, corresponding to a specific ECG signal, they would like to process.

Table 6.2: Table of measured raw ECG data in MATLAB

By looking at the size of a signal in the table (6.2) there are 15’328 data samples.
The number of data samples can be divided by the sampling frequency of the digital
signal processing chain which is of 510 Hz and it gives a measurement duration of 30
seconds. This confirms that, from the sampling point of view, these ten ECG signals
can be used as reference ones to test the designed signal processing algorithm (6.5).

To illustrate this, the real raw ECG signal #6 (6.8) is used as the input signal. Its
evolution after each subsystem is shown from here onwards. As in the theoretical
ECG representation (6.1), the ECG wave is made of low and high frequency
components that can be clearly identified.
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Figure 6.8: Real raw ECG signal #6

6.4.2 Pre-processing stage

At this point, the acquired data can flow through the first stage of the signal
processing chain represented in the diagram (6.5). It consists of successively
applying three filters on the provided ECG signal.

1) Pre-emphasis analog Bessel filter
This filter acts as a low-pass one increasing the amplitude of desired low frequency
components to reduce the effect of potential unwanted higher ones. As represented
in the Bessel Bode diagram of amplitude (6.9), low frequencies are amplified (when
the frequency response of the filter has a dB gain higher than 0 dB) from 0 to 54
Hz. In §4.2.1, it is mentioned that the cutoff frequency of the Bessel filter is of 40 Hz,
but such a filter is less selective than a Butterworth’s one. That is why there is still
some amplification up to 54 Hz. However, such a Bessel filter has the advantage of
having a constant group delay within its bandwidth. In other words, all frequencies in
its bandwidth go through the filter at the same time. By comparing the signal being
output from this filter with the raw ECG input signal (6.8), it is clearly visible that it
has been amplified by at least a factor of 3. As an example, the low frequency peak
located around 13.5 seconds has an amplitude of 0.6 V in the pre-emphasized signal
(6.9). On the other end, the similar peak in the raw signal (6.8) has an amplitude
of 0.17 V. The computed ratio between both amplitude is 0.60/0.17=3.53 which
corresponds to the gain value of this filter, as mentioned in §4.2.1, which is of 3.56.

Figure 6.9: Bessel Bode diagram of amplitude and pre-emphasized signal
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2) Band-pass digital Butterworth filter
This second filter keeps frequency components between 10 and 100 Hz, and
attenuates all the others. At the same time, right after it, a rectifier block is there
to compute the absolute value of the filtered signal to only have positive or equal to
zero values as shown in the Bandpass Butterworth Bode diagram of amplitude and
rectified signal graph (6.10).

Figure 6.10: Band-pass Butterworth Bode diagram of amplitude and rectified signal

3) Low-pass digital Butterworth filter
This filter integrates over the remaining signal to nicely extract its envelope. The final
result of this filtering process is shown in the figure (6.11). The comparison between
this envelope and the original raw signal (6.8) shows that the overall amplitude
remained the same, but the peaks are now much easier to identify in order to extract
the needed global maxima.

Figure 6.11: Low-pass Butterworth Bode diagram of amplitude and envelope of the signal
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6.4.3 Post-processing stage

Once the ECG signal has been processed and transformed into a clean envelope,
the goal is to identify all its maxima. Basically, a peak is defined as a data sample
that is either larger than its two neighboring samples or is equal to infinite. An easy
way to extract peaks from a signal or data vector is to use the function from the
Signal Processing Toolbox in MATLAB named findpeaks(). It has a variable number
of input arguments. Its easier implementation is when it is called with only one input
argument; a vector of data. In this case, it will find all the local maxima as shown
on top of the figure (6.12). The optimal solution is to call the function with a second
input argument called ’MinPeakHeight’ which allows to set a threshold value to only
extract values that are above it. This way, all global maxima stand out of this analysis
as illustrated at the bottom of the figure (6.12). For this ECG signal processing
application, a threshold value of 0.15 V, represented by the red line in the bottom
graph of (6.12), is the one providing the best results.

Figure 6.12: Extraction of maxima without and with threshold

At that point, the final step is to calculate the difference in seconds between each
pair of consecutive global maxima and to either extract the median value or calculate
the mean value among all distances. In MATLAB, the difference between pairs of
consecutive values within a vector can be easily found out by using the function diff()
over the vector containing the time values of the global maxima occurrences. It will
output a vector with one value less than the input one containing the time differences
between each pair of consecutive peaks. The pulse’s rate or distance is obtained
by inverting each difference and calculating their average value to express the heart
frequency in beats per second (BPS). Multiplying this value by 60 provides a heart
rate in beats per minute (BPM). The variation or uncertainty among the final heart
rate can be calculated by using the least mean square (LMS) approach. To illustrate
the computational operations to realize to be able to calculate the final BPM value
and its uncertainty, a short mathematical development follows.
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For a vector x of N elements representing the extracted global maxima, the distance
∆ between each pair of consecutive maxima is given by the expression (6.2).

∆(n) =
1

[x(n+ 1)− x(n)]
,∀n ∈ [1;N ] (6.2)

The mean heart rate value in BPS µ is given by the expression (6.3).

µ =
1

N − 1

N−1∑
n=1

∆(n) (6.3)

The variance on distance values σ2 is given by the expression (6.4)

σ2 =
1

N − 2

N−1∑
n=1

|∆(n)− µ|2 (6.4)

Finally, the BPM value µBPM and its standard deviation σBPM , both rounded
upwards to the next integer value (⌈v⌉ with v a real value) are given by their
corresponding expressions in (6.5).

µBPM = 60 · ⌈µ⌉

σBPM = 60 ·
⌈√

σ2
⌉

(6.5)

In the BPM results of the ECG signal #6 (6.13), a summary of the obtained results
is given. Each ECG pulse events are highlighted in the spectrogram on top. The
original and intermediate signals as well as the detected peaks are represented at
the bottom. The end result for the ECG signal #6 is of 56± 5 BPM. By counting the
events (in yellow) from the spectrogram, there are 28 of them for 30 seconds. For
one minute, this gives 2 · 28 = 56 BPM, which confirms that the output result from the
algorithm is correct. The signal processing chain represented in the diagram (6.5)
has been tested with other ECG signals as well and has been proven to be very
robust. A deeper discussion on the numerical results is provided in §9.1.

Figure 6.13: BPM results of the ECG signal #6
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6.5 Simulation model in Simulink
A feasibility analysis of the sketched algorithm (6.5) has been verified in §6.4
by using MATLAB. The next step to realize is to create its Model-Based Design
(MBD) implementation. This is the intermediate step before reusing the developed
components to generate C code automatically out of them and deploying the
application onto the real-time embedded system described in §4.

In the simulation model (6.14), the full algorithm is implemented. Only the access to
the hardware peripherals like the analog input as well as the digital inputs and outputs
is not. However, their behavior can be kind of emulated in the model which makes
it very useful to debug it early in the development process as shown in §5.1. At this
point, the focus is to model the system and its subsystems following the requirements
and to test that all of them do work as expected. Indeed, modeling and simulation
are key development steps requested by the IEC 62304 standard mentioned in §2.2.

Figure 6.14: Simulation model of the signal processing algorithm in Simulink

Remark: the requirements used to realize the simulation model (6.14) comes from
the §6.4. They have not been authored in a formal way, as this is not the focus of this
Master thesis and it would have required extra effort to do it.
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The Simulink model (6.14) is organized into three main parts:

1) The violet area, on top, represents the control panel allowing to select which
mode of simulation to run. The first mode called “Single shot” provides one
ECG signal only for 30 seconds as raw input. The signal number can be
selected between 1 and 10 by using the “SignalSelector” knob. The 0 value
means that a reset of the running algorithm is requested. The second mode of
simulation called “Robustness” runs all ten input signals one after the other with
a 15 seconds reset between each of them; running the simulation for a total of
460 seconds. This mode is especially useful to check that when a reset occurs,
all subsystems having internal states, like delays for example are reset correctly
so that the next measurement is not compromised. On the right-hand side of
the top area, displays and LEDs are present to monitor on the fly needed values
and flags

2) The area in the middle is split into two parts. On the left-hand side, the gray
area represents the analog part with the data acquisition board containing the
Bessel filter (4.6). In the yellow area there is the analog-to-digital converter
(ADC) making the transition from the continuous to the discrete time domain.
Here a key feature of Simulink is used; multirate simulation. Indeed, Simulink
can handle multiple discrete sampling rates and continuous time in the same
simulation, which is very useful for simulating multidomain physical systems

3) The pink area, at the bottom, corresponds to the part of the signal processing
chain that is deployed onto the real-time embedded system; it is made of
discrete time subsystems. By looking at the sketched diagram (6.5), it is straight
forward to observe that there is a one-to-one mapping of the subsystems from
one representation to the other. The pre-processing stage after the ADC is
there with the band-pass filter, the rectifier and the low-pass filter. The post-
processing stage is also present with the peaks extraction, the peaks time
and delta time, and the computation of the needed results (with the subsystem
called “BPMFinalValues”). A description of each subsystem’s contents from the
discrete area is provided in this section, except for the “Statistics” one that only
computes the BPM minimum and maximum values by respectively subtracting
and adding the standard deviation to the BPM mean value

The blocks used in the Simulink model (6.14) to compose each subsystem come
from the basic Simulink library for the standard mathematical operations, as well as
from the DSP System Toolbox library for designing the filters and counters. Each
one of these subsystems are designed using the same definitions and parameters
as described in §6.4.2. All this allows to speedup the development of the application.

6.5.1 Band-pass Butterworth filter

A “Bandpass Filter” block is directly available allowing to design a Butterworth band-
pass filter of fourth order. A band-pass filter’s mask (6.15) is provided to the user to
enter the desired parameters. The rectifier subsystem located right after this band-
pass filter is simply computing the mathematical function abs() to only have positive
values at its output.
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Figure 6.15: Mask to set the band-pass filter’s parameters

The frequency response of the band-pass filter (6.16) is exactly the same as the one
shown by the band-pass Butterworth Bode diagram of amplitude (6.10).

Figure 6.16: Amplitude response of the Butterworth band-pass filter
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6.5.2 Low-pass Butterworth filter

Another way to design filters is to use the “Digital Filter Designer” block. The user-
friendly interface (6.17) is provided to enter the desired parameters and directly
visualize the results via various representations.

Figure 6.17: Interface to parametrize and visualize the designed low-pass filter

The frequency response of the low-pass filter in the interface (6.17) is exactly the
same as the one shown by the low-pass Butterworth Bode diagram of amplitude
(6.11).

6.5.3 Peaks extraction

The model of the peaks extraction subsystem (6.18) implements a similar
functionality as the findpeaks() function described in §6.4.3.

Figure 6.18: Peaks extraction subsystem based on the findpeaks() function
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The peaks extraction subsystem (6.18) is made of three main sections:

1) Comparison
As mentioned in §6.4.3, a peak is defined as a data sample that is larger than
its two neighboring samples. The “comparison” block has three inputs: u1
which contains the sample before the local maximum, u2 which represents the
local maximum, and u3 which contains the sample after the local maximum.
The two delay blocks Z−d called “Previous” and “Middle” have both a delay
of 60 samples. Indeed, the maximal number of peaks that can be measured
by the application is of 255 for one minute. Therefore, the minimal possible
number of samples between two consecutive peaks is given by the operation
(60/255) · 510 = 120. That is why the parameter d = 60 in each delay block Z−d.
The total delay of these two blocks gives then 120 samples. This construction
allows to avoid the detection of peaks that would be too close to each other and
impossible physically. The logical expression that evaluates the three inputs
is: (u3 < u2) & (u2 > u1) & (u2 > threshold), with threshold having the value
defined in §6.4.3 and allowing to only output identified global maxima

2) Edge detection
The “EdgeDetector” block outputs a Boolean pulse each time a global maxima
is at its input. This allows to produce peaks having the same shape and focusing
on the timing aspect only

3) Counting peaks
The “PeaksCounter” simply increments its value by one every time the
“EdgeDetector” outputs a Boolean pulse. It is reset to zero when a user reset
is requested. Its maximum possible value is of 255, that is why it is an 8bit
counter. The output value provided by the counter is reused later to compute
the BPM mean and standard deviation values over time

6.5.4 Peaks time

The “PeaksTime” subsystem (6.19) outputs a time tag every time a peak’s pulse
comes in.

Figure 6.19: Peaks time subsystem providing the time occurrences of peaks
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The “DigitalClock” subsystem contains a similar counter block than the one used
in the peaks extraction subsystem (6.18). The only difference is that it counts at a
resolution that is equal to the rate of the sampling frequency (1/510) up to a maximum
duration of 30 seconds. That means its maximum value is of 30 ·510=15’300 which
is smaller than 214 =16’384 and is therefore a 14bit counter. Its output is then
normalized by the sampling frequency to produce an absolute time in seconds.

6.5.5 Delta time

The “DeltaTime” subsystem (6.20) computes the difference between two consecutive
peaks and save its invert value corresponding to the distance ∆ as defined in the
expression (6.2). This distance serves then as the basis to compute the BPM mean
and standard deviation values.

Figure 6.20: Delta time subsystem computing the ∆ distance
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6.5.6 BPM final value

The “BPMFinalValue” subsystem (6.21) computes the final BPM value and its
standard deviation. Its top level decides if there is a need to compute the BPM and
the standard deviation by using the logical expression (u1 ! = 0) & (u2 ! = 1), with
u1 the peaks counter value and u2 the reset signal. Once this condition is fulfilled,
the “IfPeakCompute” subsystem executes its BPM computing algorithm (6.22).

Figure 6.21: Top level of the subsystem computing the BPM final value

The “IfPeakCompute” subsystem (6.22) realizes the computational operation defined
by the expressions (6.3). Indeed, the “Cummulator” block on top represents the sum
over the time and the “Divide” block right after provides the running mean value
µ. The obtained value is then converted and rounded (upwards to the next integer
value) with respectively the “s2m” and “ceil” blocks. It finally outputs µBPM . The
standard deviation is computed by the “LeastMeanSquare” subsystem (6.23).

Figure 6.22: Subsystem computing the BPM value
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The “LeastMeanSquare” subsystem (6.23) realizes the computational operation
defined by the expressions (6.4) also including the square root operation at the end.
Here again it is straight forward to follow the mathematical operations flow from the
left to the right.

Figure 6.23: Subsystem computing the standard deviation

All the aforementioned algorithms for the post-processing stage, from §6.5.3 to
§6.5.6 have been put together inside a library of common IPs (6.24). The goal is
to re-use them as is for the deployment onto the embedded system at §6.6.

Figure 6.24: Library of common IP components for re-use

Remark: the two digital filters from the pre-processing part at §6.5.1 and §6.5.2
could have also been added to this library for re-use. However, in the DSP System
Toolbox there are also filter blocks optimized for hardware implementation rather
than for design. They can be directly parametrized with the ak autoregressive and
bk moving-average coefficients and are oriented towards optimization for automatic
C code generation. That is why these are used in the deployment part at §6.6.
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6.6 Deployment models in Simulink
The MBD implementation of the signal processing chain (6.5) has been realized by
using Simulink in §6.5. It has been verified by reusing the same ten test signals
collected in MATLAB; a discussion on the obtained numerical results is done in §9.

At this point, the goal is to deploy the designed algorithm onto the embedded system
and to connect it with the required hardware peripherals, that are: the ADC, the
digital IO’s, and the Ethernet port. Two types of deployment are done; the External
mode or Processor-In-the Loop (PIL) and the Standalone mode.

6.6.1 Processor-In-the Loop verification

PIL is part of what are called equivalence testing techniques that encompass SIL, PIL
and HIL. SIL and HIL stands respectively for Software-In-the Loop and Hardware-In-
the Loop. In the IEC 62304 standard mentioned in §2.2, SIL and HIL are requested
and are referred to as back to back testing. At the end, SIL and PIL are almost the
same. In both cases, C code is automatically generated from the MBD model. The
input stimuli and the output responses are produced and managed by the simulation
environment. The only difference is that the algorithm to test runs onto the simulation
computer in SIL mode whereas it runs directly onto the embedded target in PIL
mode. This means that in the context of verification and validation according to the
IEC 62304 standard, it is even “better” to do PIL rather than SIL verification only.

The Simulink model (6.25) is made of exactly the same discrete time subsystems
for the post-processing stage than the ones used in §6.5; they are re-used from the
common IP library (6.24). As the model runs in external mode, it is possible to add
and connect signals to viewers, like the dashboard scope, the three LEDs, and the
four displays at the bottom; this allows to monitor and visualize data coming in from
the board in real-time. The reset signal is controlled by a virtual switch in the model.

Figure 6.25: External mode model for PIL equivalence testing
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The two filter subsystems from the pre-processing stage of the PIL model (6.25)
have respectively the same frequency responses than in the Bode diagrams
(6.16) and (6.17). Their implementations is simply focusing on their ak and bk

coefficients. Indeed, these general infinite impulse response (IIR) filters are modeled
using biquadractic structures, also called second-order sections (SOS). In general,
biquadractic implementations of IIR filters are often preferred due to their desirable
numeric properties, and it is straight forward to generate C code out of these.

Filter section bk ak gk

Band-pass digital IIR
Section I [1 0 -1] [1 -1.8291848605 0.8454493997] [0.4119575908
Section II [1 0 -1] [1 -0.5037226932 0.2658440798] 0.4119575908 1]

Low-pass digital IIR
Section I [1 2 1] [1 -1.8956917312 0.9101698451] [0.0036195285
Section II [1 2 1] [1 -1.7824701008 0.7960834983] 0.0034033494 1]

Table 6.3: Filters coefficients of the Butterworth band-pass and low-pass IIR filters

The filters coefficients table (6.3) provides the values of the ak and bk coefficients for
the Butterworth band-pass and low-pass IIR filters. It also provides the gk coefficients
that are the scale gain values between each section and also at the beginning and
the end of a filter as shown in the SOS diagram (6.26).

Figure 6.26: SOS diagram with coefficients for an IIR filter of fourth order

Two subsystems have been added to the Simulink model (6.25); the “ADCinput” at
the beginning and the “LedOutput” at the end. A virtual “Reset” switch has also been
added, but this one does not physically interact with the hardware yet; only with the
processor. This is a signal controlled by the simulation environment in external mode
via the serial connection. The “ADCinput” and “LedOutput” subsystems contain
the drivers code for the interactions with the peripherals (using the Mbed hardware
abstraction layer (HAL) or not) onto the hardware and are detailed in §7.
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6.6.2 External mode

The external mode is used for rapid prototyping and to validate the generated
algorithm code by enabling parameter tuning and signal monitoring. It establishes
a communication channel between the simulation environment Simulink on the
desktop computer, also called host, and the target hardware that runs the executable
file created by the code generation and build process.

The communication diagram (6.27) shows that through the communication channel,
it is possible to modify or tune desired block parameters in real-time. When some
of them are changed on the host computer, Simulink downloads the new values to
the executing target application via the XCP1Master. From the target running the
application to the host it is possible to monitor and save signal data. At the bottom,
the low-level transport layer of the channel manages the physical transmission of
messages. The simulation environment and the generated C code running on the
target are independent of this transport layer that formats, sends, and receives
messages and data packets. In this project, the external mode is handled via a
serial connection between the host and the target by using a micro-USB cable. It
would also be possible to setup the XCP connection via Ethernet.

Figure 6.27: Host-target communication with external mode XCP

1XCP = Universal Measurement and Calibration Protocol. It is a network protocol originating from ASAM, in the automotive
industry, for connecting calibration systems to electronic control units (ECUs)
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The configuration of the external mode is shown in the hardware settings of the
Simulink model (6.28). This capability is provided by the hardware support package
(HSP) for the STM32 board introduced in §4.1. The protocol of the communication
interface is set to “Serial” with the corresponding serial port onto which the board is
connected, like “COM3” in this case.

Figure 6.28: Configuration parameters of the external mode using serial XCP

Based on the number of data to send from the target to the host, the “Baudrate” and
“Logging buffer size” can be adjusted. In the external mode model (6.25), ten double
precision signals and four Boolean signals are monitored. As a Boolean is coded on
one Byte, and a double on eight Bytes, the expression (6.6) gives the smallest baud
rate to use to correctly send the needed signals data.

BaudRate = (NbDoubleSignals · 8 +NbBooleanSignals · 1) ·ByteSize · fs

= (10 · 8 + 4 · 1) · 8 · 510 = 342˙720 (bits/second) (6.6)

The next pre-defined standard baud rate value from the STM table (6.4) is of
460˙800 (bits/second) and is then used on both sides of the serial connection.
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Table 6.4: STM32F76xxx advanced Arm-based 32-bit MCUs programmed baud rates [17]

The value of “Logging buffer size” is by default at 2000 bytes which is fine for this
application. Once these parameters are set, the user just needs to connect the board
to the host PC and clicks on the “Monitor & Tune” button in the “Run on Hardware”
section on top of the Simulink model.

6.6.3 Standalone deployment

At this point, the algorithm given by the signal processing chain (6.5) has been
verified and validated through simulation in Simulink, but also onto the hardware
itself. The last step is to deploy it onto the hardware so that it can run on its own
without being connected to any external environment; that is standalone deployment.

Figure 6.29: Standalone mode model for final deployment onto hardware

The standalone mode model (6.29) is made of exactly the same signal processing
chain than in the external mode model (6.25). Only the dashboard components
(LEDs, switch, and scope) have been removed and replaced with the real hardware
peripherals drivers. Also, the physical data connection access has been added so
that data can be sent over a local Ethernet network via either UDP or TCP/IP, or
directly on the Internet up to the cloud for IoT communication.
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7 Drivers

In this chapter, the focus is put on the subsystems that interact with the real hardware
peripherals. These are:

• a push button connected to a digital input pin to allow the reset of the heart rate
measurement

• three LEDs that provide the status of the current measurement

• an analog-to-digital converter (ADC) to convert the acquired electrocardiogram
(ECG) signal

• the Ethernet port for UDP, TCP/IP, and IoT communication’s protocols

For the three first types of peripherals, two drivers implementations are done.
The first one, called “Stm32”, consists of connecting the algorithm directly to
the peripherals at the lowest possible level in the source code that is hardware
dependent. The second one uses the hardware abstraction layer (HAL) called Mbed
that has been introduced in §3.2.

Regarding the Ethernet port, the three communication’s protocols are implemented
following the Stm32 approach. Their implementation using the Mbed HAL is not
done, because they would need to interact with the Mbed operating system (OS),
introduced in §3.1, that is not integrated with MATLAB and Simulink yet. Indeed, it
would require too much time and effort; at least one man month, for someone used
to such porting of OS to integrate it in the development environment. Nevertheless,
this could be a topic for another Master thesis to continue and augment the work
done in this one.

The handling of these two types of drivers implementations is done via variants.
A variant subsystem contains several implementations of a type of algorithm. For
example, the subsystem “Network” used in the Simulink model (6.29) is a variant
subsystem implementing the UDP, TCP/IP, and IoT communication’s protocols.
During the automatic code generation process, C code is generated for all possible
variants present in a variant subsystem. It is only at the compilation phase that the
selected variant is compiled and linked before being deployed onto the embedded
target. The offline selection of variants is convenient to do in the models by using
an annotation callback that automatically adapts all variants for either the “Stm32”
implementation (low-level bare metal) or the “Mbed” implementation using the HAL.
This can be automated by using variants conditions as well.

In the variants management figure (7.1), the button callback “Hardware drivers”
allows to select the variant implementation of the hardware peripherals. The variant
manager view is used to show all variants present in the Simulink model (6.29). It
also contains the variants conditions that are evaluated to see which variant control
must be enabled in the model. In this case, the annotation callback is set to the value
“STM32” which sets the parameter “Mbed” to ’0’ or ’false’.
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The parameter “Mbed” is used in the “Condition” column, and based on its value, the
condition expression for each variant is updated accordingly; for each subsystem,
a line with black text is ’true’ (selected), whereas one with gray text is ’false’ (not
selected).

Figure 7.1: Variants management

In the variants management view (7.1), there are two other parameters called
“Server” and “ThingSpeak” that are only used in the standalone mode model (6.29).
They are used to select the type of communication’s protocol to use in the “Network”
variant subsystem. The logical expressions within the “Condition” column for the
“Network” variant subsystem indicates that if the parameter “ThingSpeak” is ’true’
then the “IoT” subsystem is always used. If “ThingSpeak” is ’false’ then it depends
on the “Server” parameter; the “Tcp” subsystem is used if “Server” is ’true’, otherwise
it is the “Udp” subsystem.

7.1 Techniques to integrate C code in Simulink
When a model is deployed onto an embedded system, there is a need to interact
with the hardware peripherals present on it. This is where already existing C code
drivers are re-used and integrated in the project. It exists several “user-defined
functions” that can be used in Simulink to bring in external code written either in
MATLAB or C. In this project, the drivers are written in C and C++ for the low-level
Stm32 implementation as well as for the Mbed HAL. The Simulink blocks allowing to
integrate C/C++ code in Simulink have been represented and sorted by their level of
complexity in the figure (7.2).
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Figure 7.2: C code integration techniques

The C code integration techniques (7.2) represent the current state-of-the-art
capabilities in MATLAB R2021a. This is important to mention, as such capabilities
have been incrementally added to Simulink over time.
Here are the implementations details on the five C code integration techniques:

1) C Caller
On the left-hand side, the “C Caller” block has been first released in MATLAB
R2018a. It allows to easily bring C functions declared in header files and defined
in C files. The user just has to provide the path to the header files to include,
the path to the C source files, as well as the name of the needed C files. Then,
the mask of the block automatically provides a menu to select the C function to
use within this C Caller block. Based on the selected function it automatically
adapts the input and output ports. The limitation of this block is that it only works
for what is called procedural programming paradigm. That means, it cannot
handle states; it can only take inputs, apply mathematical operations with them
and output results

2) C Function
The “C Function” block has been added to MATLAB R2021a. It allows to do
procedural programming like the “C Caller” block, but not only. It can also
encapsulate object-oriented C++ code within C functions. Indeed, it also has
the capability to define initialize and terminate functions. Moreover, it can handle
states and internal parameters

3) System Object
The “System Object” technique is used to implement the hardware drivers in this
project. It has been introduced in MATLAB R2013b. Indeed, all toolboxes having
the word “system” in their name are using system objects, like the DSP System
toolbox for example. System objects are coded following the object-oriented
programing (OOP) paradigm and are by default using the “matlab.System” class
which is the base class for System objects. It has the advantage that system
objects can be both used in MATLAB and in Simulink. Basically, a system object
is written in MATLAB OOP and contains a class with methods, attributes and
states that can be private, public, protected, static and so on. It intrinsically has
the three main methods for the initialization, the execution, and the termination
of an object’s instance. These methods are respectively named setupImpl(),
stepImpl(), and resetImpl() in the class. By using the Coder directives from the
MATLAB Coder toolbox, it is possible to call and execute C/C++ code and files.
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As system objects offer this capability of mixing MATLAB and C/C++ code, this
makes them very convenient to use to implement hardware drivers. Moreover,
system objects can run in multi-instance mode for re-entrant code and handle
multiple rates as well. The implementation of such a system object is shown in
details in §7.2

4) S-Function Builder
Creating an S-Function in Simulink is not straight forward for users who do not
have experience in C programming. It requires to write a C wrapper around the
C code to import it in Simulink. It is equivalent to bringing C code in MATLAB
via a MATLAB Executable (MEX) file. The “S-Function Builder” (introduced
before MATLAB R2006a) helps end users to create the requested wrapper by
providing an interface that guides them through the required steps. It will then
automatically generate required artifacts and already compile some of them
as well. It provides the same kind of capabilities than the “C Function” block,
but can also handle multi-rates and continuous derivatives (which is useful for
dynamic systems). However, multi-instance mode is not directly supported; it
can be manually added after the C and header files have been generated

5) S-Function
The “S-Function” block (introduced before MATLAB R2006a) is meant for
experienced C programmers. The block only allows to enter the name of the
S-Function, its parameters and the list of source files modules (C and headers).
This technique is definitely the most complex as all the C code is written by
hand. Some templates are available in the documentation to help on the
structure of an S-Function

7.2 Digital inputs and outputs
In the standalone mode model (6.29), the “ResetButton” and the “LedOutput” variant
subsystems are made of driver blocks that have access to the digital I/O’s. The
variant subsystems (7.3) shows the digital I/O’s interfaces.

Figure 7.3: Variant subsystems for the digital read (left-hand side) and write (right-hand side)
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To be complete on the description of each subsystem from the standalone mode
model (6.29), a view on the contents of the “LedOutput” subsystem is given with its
logic controlling each LED (7.4). Simple combinatorial logic operations are used to
switch on and off the desired LEDs based on the current measurement’ status.

Figure 7.4: Logic controlling the red, green, and blue LEDs

Remark: for each system object described in the following sections, their intrinsic
behavior’s description automatically produces a subsystem mask with the inputs
that the end user has to fulfill. A comparison on the produced masks, but not on
the source code, is always done between the Stm32 and Mbed implementations.
Otherwise, too much source code would be shown in the thesis without being
especially useful. Therefore, the source code is only shown once for the system
objects accessing the digital I/O’s, but not for the others.

7.2.1 Digital read

The digital read driver block allows to get the value ’0’ or ’1’ from a digital pin on the
board. In §3.3.1, the standard pin names used by Mbed are explained in details.
Basically, for a digital read operation, the allowed pin names are “BUTTON0” and
“BUTTON1”, as well as “D0” to “D15”. On the evaluation board (4.2), the only
available built-in button is “BUTTON1”; that is why “BUTTON0” is not proposed in
the pin name menu of the Mbed digital read system object (7.5a).
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Figure 7.5a: Digital read system object masks for the Mbed implementation

Figure 7.5b: Digital read system object masks for the Stm32 implementation

The digital read masks (7.5a) and (7.5b) are not that different from the end user point
of view. In the Mbed case (7.5a), there is one selection menu out of which only the
allowed pin names are available. For the Stm32 version (7.5b), two selection menus
are provided; the first one to select the digital I/O port, and the second one to select
the pin index within the selected port. In order to select the right pin on the board,
the user must know where it is mapped onto the corresponding pin on the processor.
Therefore, a tight look at the pin mappings (7.6a) and (7.6b) for the evaluation board
(4.2) is requested for the Stm32 implementation. This requires some understanding
of the used hardware, as pins can be used in various modes of operation.

Figure 7.6a: Pin mapping of the digital inputs and outputs of the connector 7
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Figure 7.6b: Pin mapping of the digital inputs and outputs of the connector 10

The Mbed mask (7.5a) is automatically generated based on the non-tunable
properties defined in its corresponding system object code (7.7a).

classdef DigitalReadMBED < realtime.internal.SourceSampleTime &...

coder.ExternalDependency

%DigitalRead Get the logical value of a digital input pin.

%

% System object of a digital read block using the MBED HAL.

%

%#codegen

properties

% Public, tunable properties.

end

properties (Nontunable)

% Standard Pin Name

% Select the number of the GPIO pin to read from as one of

% ['BUTTON1'|{'D0'}| 'D1' | 'D2' | 'D3' | 'D4' | 'D5' | 'D6' | 'D7' |

% 'D8' | 'D9' | 'D10'| 'D11'| 'D12'| 'D13'| 'D14'| 'D15' ].

GpioPin = 'D0';

end

properties(Constant, Hidden)

GpioPinSet = matlab.system.StringSet(...

{'BUTTON1','D0','D1','D2','D3','D4','D5','D6','D7',...

'D8','D9','D10','D11','D12','D13','D14','D15'});

end

properties (Access = protected)

Direction = 0; % Input mode => Read pin

MW_DIGITALIO_HANDLE;

end

methods

% Constructor

function obj = DigitalReadMBED(varargin)

% Support name-value pair arguments when constructing the object

setProperties(obj,nargin,varargin{:});

end

end

Figure 7.7a: Mbed implementation of the digital read system object (properties)

September 20, 2021 56/95 Master Thesis.pdf



7 Drivers

methods (Access=protected)

function setupImpl(obj)

if isempty(coder.target)

% Place simulation setup code here

else

%% Include all needed low-level API header files for the GPIOs

coder.cinclude('MW_digitalIO.h');

%% Declaration of needed local variables with their specific type

obj.MW_DIGITALIO_HANDLE = coder.opaque('MW_Handle_Type',...

'HeaderFile','MW_SVD.h');

pinIdxLoc = coder.opaque('uint32_t',obj.GpioPin);

%% Call C-function implementing device initialization

% Configure GPIO in input mode

obj.MW_DIGITALIO_HANDLE = coder.ceval('MW_digitalIO_open',...

pinIdxLoc,obj.Direction);

end

end

function y = stepImpl(obj)

y = false;

if isempty(coder.target)

% Place simulation output code here

else

%% Call C-function implementing device output

% Extract level of the selected GPIO pin

y = coder.ceval('MW_digitalIO_read',obj.MW_DIGITALIO_HANDLE);

end

end

function releaseImpl(obj)

if isempty(coder.target)

% Place simulation termination code here

else

%% Call C-function implementing device termination

coder.ceval('MW_digitalIO_close',obj.MW_DIGITALIO_HANDLE);

end

end

end

methods (Static)

function name = getDescriptiveName()

name = 'Source';

end

function b = isSupportedContext(context)

b = context.isCodeGenTarget('rtw');

end

function updateBuildInfo(buildInfo, context)

if context.isCodeGenTarget('rtw')

% MBED Digital I/O interface

mbedDir = codertarget.mbed.internal.getRootDir;

addIncludePaths(buildInfo,fullfile(mbedDir,'include'));

addIncludeFiles(buildInfo,'MW_digitalIO.h');

addSourceFiles(buildInfo,'MW_digitalIO.cpp',fullfile(mbedDir,'src'));

addIncludeFiles(buildInfo,'MW_MbedPinInterface.h');

end

end

end

end

Figure 7.7b: Mbed implementation of the digital read system object (methods)
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The system object code section (7.7a) is made of two main properties; the sampling
time that is inherited from the class “realtime.internal.SourceSampleTime” on top
of the class definition, and the “GpioPin” that follows the Arduino Uno Pin Name
convention. The valid values of “GpioPin” are listed in “GpioPinSet”. When the user
fulfills the requested properties in the mask, only the pre-defined values are allowed.
In this code section, a standard constructor method is there for the instantiation of
the object.

In the system object code section (7.7b), the focus is put on the methods realizing the
effective driver’s tasks. As mentioned in §7.1, the behavior of the three main methods
setupImpl(), stepImpl(), and releaseImpl() must be defined. These methods are
respectively implementing the “initialization”, “execution”, and “termination” actions
of the object’s instance.

The implementation of the functionality for each method is done in MATLAB code
and the access to the Mbed HAL in C code is done via calls to the MATLAB
Coder directives. The first directive that is used in the setupImpl() method is called
“coder.target”. It allows to select the code to execute based on its effective execution.
In this project, the drivers are used for deployment only, so for C code generation, but
not for simulation. However, in the first if statement with “coder.target”, it is possible
to implement the behavior of the system object when it is used for simulation which,
in some cases, can be very useful.

The next directive to be used is called “coder.cinclude” and it allows to include one
or more external header files to the project. Here, the Mbed HAL is implemented
via the “MW_digitalIO.h” header file that contains the prototype functions to initialize,
execute, and terminate the access in read or write mode to a digital I/O pin.

Then, the “coder.opaque” directive is used to declare and initialize a local
variable, like for example: myV ar = coder.opaque(′uint32_t′, 0); that produces
uint32_t myV ar = 0;. In the setupImpl() method, the handle to the object’s instance
(a void pointer) is initialized before getting its pointer value from the call to the C
function ’MW_digitalIO_open()’. The “coder.ceval” directive is used when it comes to
call and execute a C function, like ’MW_digitalIO_open()’. The first input argument
of “coder.ceval” is the name of the C function, and the remaining ones correspond
to the input arguments of the called C function. Its output argument, in this case the
pointer to the handle, is retrieved on the left-hand side of the equal sign.

The code of the stepImpl() method is simply made of the initialization of the output
Boolean variable ’y’ and the call to the C function ’MW_digitalIO_read()’ that under
the hood calls the ’read()’ method introduced in the Mbed API for digital I/O’s (3.5).

The code of the releaseImpl() method is simply calling the C function
’MW_digitalIO_close()’ that releases the used resources; especially the handle to
the digital I/O pin object’s instance.

The updateBuildInfo() method is there to include the required header and source
files, and their folders locations, like the “mbedDir”. This is here that the Mbed related
C files are linked to the generic MathWorks files, allowing to connect them to any C
interface, like the Mbed HAL.
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The properties defined in the system object code for the Stm32 implementation
(7.8a) are a bit different. Indeed, the digital pin parameter is divided into its logical
port and its pin number. Moreover, there are seven ports providing 16 pin indices
each, but the eight’s one (GPIOH) has only two pins. This means that the mask
of the system object must dynamically adapt its pin index selection menu based on
the selected GPIO port, which makes it already a bit more complex than the Mbed
implementation. This also implies that the end user knows that for example the
Arduino Uno Pin Name ’D6’ is indeed ’PE_9’, with the logical port ’GPIOE’ and the
pin index ’9’. This requires some technical knowledge on the used hardware target.

classdef DigitalReadSTM32 < realtime.internal.SourceSampleTime &...

coder.ExternalDependency

%DigitalRead Get the logical value of a digital input pin.

%

% System object of a digital read block.

%

%#codegen

properties

% Public, tunable properties.

end

properties (Nontunable)

% GPIO Port

% Select a GPIO port to read from as one of

% [{'GPIOA'}| 'GPIOB' | 'GPIOC' | 'GPIOD' |

% 'GPIOE' | 'GPIOF' | 'GPIOG' | 'GPIOH' ].

GpioPort = 'GPIOA';

% GPIO Pin index

% Select the number of the GPIO pin to read from as one of

% [{'0'}| '1' | '2' | '3' | '4' | '5' | '6' | '7' |

% '8' | '9' | '10'| '11'| '12'| '13'| '14'| '15' ].

GpioPin = '0';

% GPIO Pin index

% Select the number of the GPIO pin to read from as one of

% [{'0'}| '1' ].

GpioPinH = '0';

end

properties(Constant, Hidden)

GpioPortSet = matlab.system.StringSet(...

{'GPIOA','GPIOB','GPIOC','GPIOD','GPIOE','GPIOF','GPIOG','GPIOH'});

GpioPinSet = matlab.system.StringSet(...

{'0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15'});

GpioPinHSet = matlab.system.StringSet({'0','1'});

end

methods

% Constructor

function obj = DigitalReadSTM32(varargin)

% Support name-value pair arguments when constructing the object

setProperties(obj,nargin,varargin{:});

end

end

Figure 7.8a: Stm32 implementation of the digital read system object (properties)

In the Stm32 implementation (7.8b), the method isInactivePropertyImpl() handles the
dynamic adaptation of the pin index selection menu based on the selected port.
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The code of the setupImpl() method for the Stm32 implementation (7.8b) is more
complex than for the Mbed one (7.7b). First, the low-level modules to include are
target specific, like ’stm32f7xx_ll_gpio.h’ and ’stm32f7xx_ll_bus.h’; this means that
they must be adapted if the target changes. Then, the right macros and local variable
used in the C source files must be built based on the mask’s parameters. Once, this
is done, the initialization of the GPIO can be done. However, not only the pin must
be set to read or write, but also the GPIOs clock must be enabled, which was not
requested with the Mbed HAL.

methods (Access=protected)

function flag = isInactivePropertyImpl(obj,prop)

flag = false;

% Filter the Pin selection related properties

switch (prop)

case 'GpioPinH'

if ~strcmp(obj.GpioPort,'GPIOH')

flag = strcmpi(prop,'GpioPinH');

end

case 'GpioPin'

if strcmp(obj.GpioPort,'GPIOH')

flag = strcmpi(prop,'GpioPin');

end

otherwise

% That is an error

end

end

function setupImpl(obj)

if isempty(coder.target)

% Place simulation setup code here

else

%% Include all needed low-level API header files for the GPIOs

coder.cinclude('stm32f7xx_ll_gpio.h');

coder.cinclude('stm32f7xx_ll_bus.h');

%% Recomposition of macro names

% Set the pin mode to input

pinModeMacro = 'LL_GPIO_MODE_INPUT';

% Extract the GPIO port and index

pinPortMacro = obj.GpioPort;

if ~strcmpi(obj.GpioPort,'GPIOH')

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPin];

else

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPinH];

end

%% Declaration of needed local variables with their specific type

gpioClockLoc = coder.opaque('uint32_t',['LL_AHB1_GRP1_PERIPH_' pinPortMacro]);

pinIndexLoc = coder.opaque('uint32_t',pinIndexMacro);

pinModeLoc = coder.opaque('uint32_t',pinModeMacro);

pinPortLoc = coder.opaque('GPIO_TypeDef *',pinPortMacro);

%% Call C-function implementing device initialization

% Enable the GPIOs clock

coder.ceval('LL_AHB1_GRP1_EnableClock',gpioClockLoc);

% Configure GPIO in input mode

coder.ceval('LL_GPIO_SetPinMode',pinPortLoc,pinIndexLoc,pinModeLoc);

end

end

Figure 7.8b: Stm32 implementation of the digital read system object (methods part 1)
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The same explanation do apply to the stepImpl() and releaseImpl() methods. It is
also important to note that the reading of the GPIO pin level (’0’ or ’1’) is done in two
steps; the GPIO port is read and then a pin index mask is applied to get the pin level.

function y = stepImpl(obj)

y = false;

if isempty(coder.target)

% Place simulation output code here

else

%% Recomposition of macro names

% Extract the GPIO port and index

pinPortMacro = obj.GpioPort;

if ~strcmpi(obj.GpioPort,'GPIOH')

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPin];

else

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPinH];

end

%% Declaration of needed local variables with their specific type

pinPortLoc = coder.opaque('GPIO_TypeDef *',pinPortMacro);

pinIndexLoc = coder.opaque('uint32_t',pinIndexMacro);

%% Call C-function implementing device output

% Get current GPIO port levels

y = coder.ceval('LL_GPIO_ReadInputPort',pinPortLoc);

% Extract level of the selected GPIO pin

y = coder.ceval('LL_GPIO_IsInputPinSet',pinPortLoc,pinIndexLoc);

end

end

function releaseImpl(obj)

if isempty(coder.target)

% Place simulation termination code here

else

%% Recomposition of macro names

% Extract the GPIO port and index

pinPortMacro = obj.GpioPort;

%% Declaration of needed local variables with their specific type

pinPortLoc = coder.opaque('GPIO_TypeDef *',pinPortMacro);

%% Call C-function implementing device termination

coder.ceval('LL_GPIO_DeInit',pinPortLoc);

end

end

end

methods (Static)

function name = getDescriptiveName()

name = 'Source';

end

function b = isSupportedContext(context)

b = context.isCodeGenTarget('rtw');

end

function updateBuildInfo(~,context)

if context.isCodeGenTarget('rtw')

% Rely on the files of the Hardware Support Package

end

end

end

end

Figure 7.8c: Stm32 implementation of the digital read system object (methods part 2)
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The updateBuildInfo() method of the Stm32 implementation (7.8c) is empty, as all the
requested include and source files are provided by the STMicroelectronics Nucleo
Boards hardware support package (HSP) that is installed in MATLAB.

7.2.2 Digital write

The digital write driver block allows to set the value ’0’ or ’1’ to a digital pin on the
board. The same “D0” to “D15” pins as described in §7.2.1 can be used for Mbed.
In addition to these pins, the other allowed pin names are “LED1”, “LED2”, “LED3”
and “LED4”. These pin names are proposed in the menu of the Mbed digital write
system object (7.9a).

Figure 7.9a: Digital write system object masks for the Mbed implementation

Figure 7.9b: Digital write system object masks for the Stm32 implementation

As for the digital read masks (7.5a) and (7.5b), the digital write masks (7.9a) and
(7.9b) have respectively the same options than the digital read masks, and are
generated in the same way.

The properties of the Mbed digital write system object (7.10a) are the same than for
the digital read one (7.7a). Only the “LEDx” values replace the “BUTTONx” ones,
and the pin “Direction” is set to the output mode to write to the selected pin.
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classdef DigitalWriteMBED < matlab.System &...

coder.ExternalDependency

%DigitalWrite Set the logical value of a digital output pin.

%

% System object of a digital write block using the MBED HAL.

%

%#codegen

properties

% Public, tunable properties.

end

properties (Nontunable)

% Standard Pin Name

% Select the number of the GPIO pin to write to as one of

% [{'D0'}| 'D1' | 'D2' | 'D3' | 'D4' | 'D5' | 'D6' | 'D7' |

% 'D8' | 'D9' | 'D10'| 'D11'| 'D12'| 'D13'| 'D14'| 'D15'|

% 'LED1'|'LED2'|'LED3'|'LED4'].

GpioPin = 'D0';

end

properties(Constant, Hidden)

GpioPinSet = matlab.system.StringSet(...

{'D0','D1','D2','D3','D4','D5','D6','D7','D8','D9','D10',...

'D11','D12','D13','D14','D15','LED1','LED2','LED3','LED4'});

end

properties (Access = protected)

Direction = 1; % Output mode => Write pin

MW_DIGITALIO_HANDLE;

end

methods

% Constructor

function obj = DigitalWriteMBED(varargin)

% Support name-value pair arguments when constructing the object

setProperties(obj,nargin,varargin{:});

end

end

Figure 7.10a: Mbed implementation of the digital write system object (properties)

The methods for the digital write system object (7.10b) are the same than for the
digital read one (7.7b). The only difference is that the setupImpl() method configures
the GPIO in output mode this time, and the code of the stepImpl() method simply
calls the C function ’MW_digitalIO_write()’ with the input argument ’u’ that defines
the pin level. Under the hood, this function calls the ’write()’ method introduced in
the Mbed API for digital I/O’s (3.5).
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methods (Access=protected)

function setupImpl(obj)

if isempty(coder.target)

% Place simulation setup code here

else

%% Include all needed low-level API header files for the GPIOs

coder.cinclude('MW_digitalIO.h');

%% Declaration of needed local variables with their specific type

obj.MW_DIGITALIO_HANDLE = coder.opaque('MW_Handle_Type',...

'HeaderFile','MW_SVD.h');

pinIdxLoc = coder.opaque('uint32_t',obj.GpioPin);

%% Call C-function implementing device initialization

% Configure GPIO in output mode

obj.MW_DIGITALIO_HANDLE = coder.ceval('MW_digitalIO_open',...

pinIdxLoc,obj.Direction);

end

end

function stepImpl(obj,u)

if isempty(coder.target)

% Place simulation output code here

else

%% Call C-function implementing device output

% Set the level of the selected GPIO pin

coder.ceval('MW_digitalIO_write',obj.MW_DIGITALIO_HANDLE,u);

end

end

function releaseImpl(obj)

if isempty(coder.target)

% Place simulation termination code here

else

%% Call C-function implementing device termination

coder.ceval('MW_digitalIO_close',obj.MW_DIGITALIO_HANDLE);

end

end

end

methods (Static)

function name = getDescriptiveName()

name = 'Sink';

end

function b = isSupportedContext(context)

b = context.isCodeGenTarget('rtw');

end

function updateBuildInfo(buildInfo,context)

if context.isCodeGenTarget('rtw')

% MBED Digital I/O interface

mbedDir = codertarget.mbed.internal.getRootDir;

addIncludePaths(buildInfo,fullfile(mbedDir,'include'));

addIncludeFiles(buildInfo,'MW_digitalIO.h');

addSourceFiles(buildInfo,'MW_digitalIO.cpp',fullfile(mbedDir,'src'));

addIncludeFiles(buildInfo,'MW_MbedPinInterface.h');

end

end

end

end

Figure 7.10b: Mbed implementation of the digital write system object (methods)
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The properties defined in the digital write system object code for the Stm32
implementation are exactly the same than for the digital read one (7.8a). That is
why the code for it is not repeated here. The same remark does apply for the
isInactivePropertyImpl() and setupImpl() Stm32 methods (7.8b) as well. The only
difference is that the pin mode is set to output (’LL_GPIO_MODE_OUTPUT’) instead
of input (’LL_GPIO_MODE_INPUT’).

The difference within the stepImpl() method is that when the input level ’u’ must be
written to the pin, either the low-level C function ’LL_GPIO_SetOutputPin’ is called
to write a ’1’, or the low-level C function ’LL_GPIO_ResetOutputPin’ is called to write
a ’0’.

The releaseImpl() and updateBuildInfo() methods are the same than in the Stm32
implementation of the digital read system object (7.8c).

function stepImpl(obj,u)

if isempty(coder.target)

% Place simulation output code here

else

%% Recomposition of macro names

% Extract the GPIO port and index

pinPortMacro = obj.GpioPort;

if ~strcmpi(obj.GpioPort,'GPIOH')

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPin];

else

pinIndexMacro = ['LL_GPIO_PIN_' obj.GpioPinH];

end

%% Declaration of needed local variables with their specific type

pinPortLoc = coder.opaque('GPIO_TypeDef *',pinPortMacro);

pinIndexLoc = coder.opaque('uint32_t',pinIndexMacro);

%% Call C-function implementing device behaviour

if isequal(logical(u),true)

% Set GPIO pin to high level

coder.ceval('LL_GPIO_SetOutputPin',pinPortLoc,pinIndexLoc);

else

% Set GPIO pin to low level

coder.ceval('LL_GPIO_ResetOutputPin',pinPortLoc,pinIndexLoc);

end

end

end

Figure 7.11: Stm32 implementation of the digital write system object (stepImpl() method)

7.3 Analog-to-digital converter
The analog-to-digital converter (ADC) peripheral converts the analog input signal
coming from the signal acquisition board (4.3) into a digital signal for the processor.
The driver for such a peripheral is much more complex than for the digital I/O’s
described in §7.2. Multiple modes of operation are available for an ADC and these
are listed in the §7.3.1 for the Stm32 implementation.
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7.3.1 ADC modes of operation

On the STMicroelectronics Nucleo evaluation board (4.2), three 12-bit ADCs
are available and each of them shares up to 16 external channels, performing
conversions in single-shot or scan mode. In scan mode, automatic conversion
is performed on a selected group of analog inputs. The ADC can be served by
the DMA controller. An analog watchdog feature allows very precise monitoring
of the converted voltage of one, some or all selected channels. An interrupt is
generated when the converted voltage is outside the programmed thresholds. To
synchronize A/D conversion and timers, the ADCs could be triggered by any of its
eight timers (TIMx). The ADC operation’s modes table (7.1) shows all possible ADC
configurations when they work in the “Independent” mode. Indeed, it is even possible
to configure the ADCs to work together, but this is not explained here.

Table 7.1: ADC independent operation’s modes

The listing of all possible independent operation’s modes for an ADC is needed to be
able to write its corresponding Stm32 system object correctly.
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Based on this, the ADC mask (7.12) is generated from its system object’s code.

Figure 7.12: ADC system object mask for the Stm32 implementation

The Stm32 ADC mask (7.12) adapts its contents dynamically as some settings
depend on others. At that level of details it is required that end users know how
the ADC are connected to the processor and how they want to use it. However, for
users who are not that deep inside technical details, the goal is definitely to abstract
all this low-level complexity to them.

Regarding the Mbed implementation of the ADC (7.13), only three input parameters
are provided to the end users. The first one is the Arduino Uno Pin Name for an
analog input that goes from A0 to A5 as explained in §3.3.1. The second one is an
additional output flag that allows to see if ADC conversions are done successfully
or not. The last one, called ’SampleTime’ represents the ADC sampling time that
is inherited from the class “realtime.internal.SourceSampleTime”. For the Mbed
implementation, the ADC works in the “Regular Conversion Mode” with the “Software
Trigger Conversion Source” only. This mode corresponds to the two first cells of the
orange column of the ADC operation’s modes table (7.1). All other required settings
are already set to their default/most common values.

Figure 7.13: ADC system object mask for the Mbed implementation
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7.4 Communication’s protocols
Three communication’s protocols are used by the STM Nucleo embedded system
(4.2) to send data over networks. UDP and TCP/IP are used to send data over a local
private network. On the target side, the UDP and TCP/IP send blocks provided by its
HSP are directly used. On the host side, the UDP and TCP/IP receive blocks from
the Instrument Control toolbox are directly used as well. The third communication’s
protocol opens an IoT channel to send data up to the MathWorks cloud solution
called ThingSpeak directly over the Internet. On the target side, a unique system
object has been created to send data in a ThingSpeak channel.

For this project, there are five main signals to send over these networks: the raw
ECG signal, the mean BPM value, the BPM standard deviation, the valid flag and the
reset flag.

7.4.1 UDP and TCP/IP

The UDP protocol consists of sending data packets over a network to a specific
remote IP address like ’192.168.1.100’ as shown in the UDP send mask (7.14), or
to broadcast them to all IP addresses by using ’255.255.255.255’ without waiting on
any received confirmation from the remote receiver(s). This means that if a data
packet is not transmitted successfully, it will not be resent and its data are then lost.

Figure 7.14: UDP send system object’s mask

The TCP/IP protocol consists of a client/server architecture. When the embedded
system is set in ’Server’ mode as shown in the TCP/IP send mask (7.15), it will send
data packets over the network to a remote host and wait on a confirmation that each
data packet is received correctly. Indeed, the local IP port acts as a listening port on
the TCP/IP server. If a data packet is not transmitted successfully, it will be resent to
avoid a loss of data.

It is also possible to set the embedded system in ’Client’ mode. In this case, it is
required to provide the server IP address and its corresponding IP port so that data
are sent to the right server.
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Figure 7.15: TCP/IP send system object’s mask

In both cases, UDP (7.14) and TCP/IP (7.15), the local and remote logical ports are
set by the parameter ’logicalPort’ that has the value ’25000’ to make it simple. In fact,
any available logical port value can be set to the local and remote logical port fields
and they can also be different.

The Ethernet settings (7.16) of the standalone model (6.29) deployed onto the
embedded system are set for a local network with the private IP address
’192.168.1.10’. The remote host IP address is directly set in the gateway field
’192.168.1.100’. This way the end user can be sure that both devices are in the
same private local network.

Figure 7.16: Ethernet configuration of the embedded target within a private local network

Remark: it can be that the firewall present on the remote host blocks the incoming
data packets. Therefore, a rule should be setup in the firewall to allow such UDP or
TCP/IP packets to go through it.
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7.4.2 IoT channel

In this case, the goal is to setup a communication’s channel to send data over the
Internet up to the ThingSpeak cloud solution created by MathWorks. This is an IoT
analytics platform service that allows to collect, process and visualize data remotely
in the cloud. The diagram (7.17) shows on the left-hand side what is called the “edge
node”. In this project, it consists of the embedded system (4.2) processing and
sending the ECG data. In the middle, the data sent by the edge node are collected
in the “operational technology node”, also known as the cloud via the ThingSpeak
channel. On the right-hand side, the MATLAB environment present on the cloud
allows to process and visualize data.

Figure 7.17: ThingSpeak IoT systems [21]

In order to send IoT data over a ThingSpeak channel some rules must be applied.
Indeed, there are some limitations with regards to the amount of data that can be
transferred over time and there is also a specific data structure to respect.

The first limitation is that a set of data cannot be sent at a faster rate than one every
second, so at a frequency of 1 Hz. The second limitation is that only URL encoded
characters can be sent through the communication’s channel. This means that:

• numerical data have to be split into separate bytes. For example, a double
precision floating point value, which is encoded using 64 bits or 8 bytes, must
be split into 8 unsigned integer of 8 bits each, so 8 x uint8

• as represented in the structure of a ThingSpeak channel (7.18), there are eight
custom fields that can contain data. Each of them can be filled with a string
having a maximal length of 255 characters

• URLs can only be sent over the Internet using the ASCII1 character-set or
with a "%" followed by two hexadecimal digits for special/unsafe characters, like
space

At the beginning of §7.4, it is stated that five signals must be sent over the network.
As shown in the data structure (7.18), each of them is assigned to its own field.

1ASCII = American Standard Code for Information Interchange
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It is then required to shape them following the aforementioned constraints so that
they are transmitted properly up to the ThingSpeak cloud.

Figure 7.18: Structure of a ThingSpeak channel

A unique channel ID is assigned to each ThingSpeak channel, and two unique API
keys are generated and assigned to each of them making their read and write access
secured and only allowed to the users having them.

The standalone mode model (6.29) contains the “Network” variant subsystem with
the implementation of the “IoT” subsystem sending the required data to ThingSpeak.
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Figure 7.19: Mask of the BytePack subsystem packing data as one uint8 vector

At the “Bytes” input port #1 of the IoT subsystem (7.20) data are coming in from
the “BytePack” subsystem present in the standalone mode model (6.29). This
subsystem converts its input data into a single output vector of uint8 bytes, which
is very useful when data are packed in data frames of whatever communication’s
protocol. In the mask of the “BytePack” subsystem (7.19), the end user enters the
data type of each input so that it is aware of how to organize them as one single uint8
vector. The byte alignment parameter is set to ’1’ which means that the smallest
entity is a byte. It can also have the values ’2’, ’3’ or ’4’. With a value of ’2’, this would
mean that a Boolean made of one byte only will have a blank byte added right after
it, as in this case, the smallest possible entity is of two bytes.

As the Raw ECG signal is handled separately for the “IoT” subsystem, via the “Raw”
input port #2, its bytes data packed by the “BytePack” subsystem are simply ignored
by the “SelectorScalar” block placed right after the “Bytes” input port #1. In other
words, the bytes representing the ’double’ data type signal are not selected. Also
two ’uint8’ bytes from the BytePack mask (7.19) representing the “BpmMin” and
“BpmMax” signals are ignored as they are not sent to the ThingSpeak cloud.

Figure 7.20: Algorithm of the IoT subsystem sending data to ThingSpeak
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The inputs “var2” to “var5” of the “IotWrite” subsystem of (7.20) represent
respectively the “BpmMean”, “BpmDev”, “Valid” and “Reset” signals that have been
byte packed and are seen as “scalar values” by the “IotWrite” subsystem. So that
the signal that is provided to the “var1” input is also considered as a “scalar value”, it
requires a reshaping of the “Raw” signal.

The “Raw” signal is updated at the sampling frequency of 510 Hz (cf.(6.1)). It is
a double precision data type signal, so it is made of eight bytes per sample. That
means that there are per second 510 · 8 = 4’080 bytes to send on the network.
These are too much bytes to send than what is allowed for a single field within a
ThingSpeak channel (255 bytes/second). Therefore, the amount of data to send for
the “Raw” signal must be reduced. This is what is done between the “Raw” input port
#2 and the “var1” input of the “IotWrite” system object in the IoT subsystem (7.20).

As the 510 double precision data samples per second cannot be kept, the first
transformation that is done is to downsample the “Raw” signal by a ratio of at least
2, so that the sampling frequency changes from 510 to 255 Hz. As the maximal
number of bytes to send per second in a single field within a ThingSpeak channel
is of 255, it would work. However, it has been stated earlier in this section that
only ASCII characters can be sent over the Internet in a URL encoded format. The
ASCII encoding uses 7 bits, so that makes 27-1 = 127 possible characters (the null
character ’0’ cannot be used as well). All encoded characters between 27 and 28-1
(128 to 255) are not allowed and not understood on the ThingSpeak server side. So,
it is physically possible to send 255 bytes per second per field, but only 127 unique
values can be used to represent the encoded data. This means that if 255 ASCII
characters are sent, one unique value is always repeated twice, so the encoded
URL character is duplicated which is not very useful and efficient. As a results the
downsampling ratio N has been set to 4 so that 127 unique ASCII values can be
sent through the communication’s channel. Because, of this sampling frequency
decrease, a “Rate transition” block is added right after the “Downsample” one to
properly handle the sampling frequency change.

The next step is to buffer multiple samples together before sending them as a vector
of ASCII chars. In this case, 127 ASCII values are sent and so is the size of the
buffer. At that point, the data type of the values is always of double precision, so
each sample is made of eight bytes. That means that 127 · 8 = 1’016 bytes are sent
per second on the network. To further reduce the amount of data to send, these
double precision values are converted into unsigned integers of 8 bits (uint8), and
are therefore represented by only one byte each. Obviously, going from a 64 bits
representation down to a 8 bits one implies a significant loss of resolution. However,
the ADC converting the ECG signal from the data acquisition board (4.3) has a
resolution of 12 bits (cf.4.1.1). This means that the loss of data is less dramatic
than what it seems at a first sight. Indeed, the ADC provides values going from
0 to 212-1 (4095). At the end, the data resolution factor R is of 4096/127 ∼= 32.25.
This data compression is done inside the MATLAB function block “ScallingData”, and
eventually its output is provided to the “var1” input of the “IotWrite” subsystem.
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The total compression factor K (7.1) is given by the downsampling and resolution
factors N and R. The impact of this data compression is discussed in §9.2.

K = N ·R = 4 · 4096
127

∼= 129 (7.1)

The “IoTWrite” system object consists of sending data packets over the Internet via
a ThingSpeak’s channel. Its mask (7.21) allows the end user to insert the channel’s
related information such as the ID of the channel, the API key to write in it, the
number of variables to send or fields to use (five in this case) and also what is the
minimum update interval in seconds knowing that the smallest possible one is of
one second. An effect to also consider is the time jittering because of the Internet
connection. As packets do not all travel at the same speed and do follow different
paths on the Internet, there is some time jittering. On the ThingSpeak server side,
it is of about 3%. To be on the safe side, a jitter of 5% is taken into account in this
subsystem to define the minimum update interval UT (7.2).

UT = 1 + 0.05 = 1.05 second (7.2)

Figure 7.21: Mask of the IoT subsystem sending data to ThingSpeak

The code of the function ’writeFieldsData’ (7.22) belonging to the “IotWrite” system
object shows how ’scalar’ and especially ’vector’ data are processed before being
sent onto the channel. If its input ’fieldData’ is a scalar, the low-level C function
’MW_addFieldScalar’ can directly be called. It will simply transform the value in a set
of uint8 bytes before transmitting it. However, if ’fieldData’ is a vector of uint8 values,
they are first converted into an array of char and processed by the urlEncode()
function. This one converts all unsafe ASCII chars to their URL encoded value made
of a “%” followed by their corresponding two hexadecimal digits, like for example
%20 for the space character. The remaining safe ASCII chars made of the following
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regular expression subset (-a-zA-Z_0-9.)̃ remain as is. As characters are coded in
the UTF-8 format, it can be that some bytes have values greater than the last ASCII
code 127. In this case, the utf8ToNative() function adds an extra byte with the value
194 in front of it, following the conversion to the native character format.

function [] = writeFieldsData(fieldData,fieldIndex)

% Initialization

nbBytesMax = 255; % Max number of bytes allowed per ThingSpeak field

nbElements = numel(fieldData);

% Process the field data based on its size

if ((nbElements > 1) && (nbElements <= nbBytesMax)) % Vector

charArray = cell(1,nbElements);

for n=1:nbElements

charArray{n} = char(fieldData(n));

end

char2send = [charArray{:}];

data2send = urlEncode(char2send);

% URL encoding of the

coder.ceval('MW_addField',data2send,fieldIndex);

elseif (nbElements == 1) % Scalar

coder.ceval('MW_addFieldScalar',fieldData,fieldIndex);

else % Empty data or vector size not supported by ThingSpeak

error(message('stmmbed:blocks:ThingSpeakFieldMismatch'));

end

end

function res = urlEncode(charsUtf8)

if isempty(charsUtf8)

res = '';

else

% Regular expression for the subset of chars that cannot be sent directly

% notDirect = '([^'' -a-zA-Z_0-9.~ ''])';

% ASCII code of the corresponding subset, handle 37 => '%' chars first

notDirect = char([37 (1:1:36) (38:1:44) 47 (58:1:64)...

(91:1:94) 96 (123:1:125) (127:1:255)]);

% Convert from UTF8 to native characters representation

res = char(utf8ToNative(charsUtf8));

for k=1:numel(notDirect)

if contains(res,notDirect(k))

% Replace unsafe chars with their %xx representation

res = strrep(res,notDirect(k),['%' dec2hex(notDirect(k),2)]);

end

end

res = [res char(0)]; % Concatenate the null char at the end of the chain

end

end

function native = utf8ToNative(u8code)

% Initialization

nbBytes = numel(u8code);

native = zeros(1,2*nbBytes,'uint8'); % Maximal possible number of bytes

j = 0;

% Look for bytes greater than the ASCII code 127 and insert the extra byte 194

for i=1:numel(u8code)

j = j+1;

if (u8code(i) >= 2^7)

native(j) = uint8(194);

j = j+1;

end

native(j) = u8code(i);

end

% Remove useless trailing bytes

native(j+1:end) = [];

end

Figure 7.22: Writing mechanism to the ThingSpeak’s data fields in the system object

September 20, 2021 75/95 Master Thesis.pdf



7 Drivers

The Ethernet settings (7.23) of the standalone model (6.29) deployed onto the
embedded system are different than the ones set for the UDP and TCP/IP local
network connection (7.16). This time the edge node is represented by a router which
is connected to the Internet, and the STM32 Nucleo board (4.2) is locally connected
to the router. That is why its private IP address is ’192.168.0.25’ and the gateway
field has the router IP address ’192.168.0.1’. The router gets a public IP address
from an Internet provider so that it is connected to the Internet and forward the data
coming from the board to the ThingSpeak cloud.

Figure 7.23: Ethernet configuration of the embedded target for IoT connectivity

Both Ethernet settings (7.16) and (7.23) are used for the same standalone model
(6.29). The selection of one or the other configuration is handled via the variant
mechanism explained at the beginning of §7.

Once the communication’s channel is established between the edge node and the
ThingSpeak cloud, data are transmitted at the pace defined by the update interval
UT (7.2). As introduced in §6.2.1, a measurement of at least 30 seconds is required
to get a valid beats per minutes (BPM) result.

ThingSpeak provides an interface, that can be accessed via a web browser to
visualize data on-the-fly and also process and export them. The web interface (7.24)
provides pre-defined plots to graphically display results. Some parameters can be
set, like the update interval and the data range for example. In this case, the plots of
scalar signals (mean, deviation, valid and reset) are refreshed every second and do
not require any specific post-processing of the collected data.
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Figure 7.24: ThingSpeak web interface to manage collected data

For this specific measurement of the ECG signal #6, the results provided by the
web interface (7.24) show that 35 data points or entries have been collected, which
makes a measurement of at least 35 seconds. This is confirmed by the time tags
ThingSpeak automatically adds on the time axis of each plot.

On the edge node, it is clear that the data samples are output a regular pace of 1.05
second (cf. (7.2)). However, on the operational technology node, if a packet does not
arrive at the expected time, it is ignored by ThingSpeak. The probability is not null
for such a situation to occur, because of the time jittering over the Internet and the
ThingSpeak server (located in the United-States) handling many parallel connections
at the same time.

For the scalar measured signals, it is not that problematic if there is a new sample
every two seconds instead of every second. The end result is still accurate enough.
Indeed, in the plot of the “BPM mean” value, the green rectangle contains three
consecutive values, one every second, which is correct. In the same plot, the gray
rectangle contains two values with a third one missing between the two. This
means that one packet did not arrive within the expected time window and it has
been rejected by ThingSpeak. However, when it comes to the measure of the
raw ECG signal, losing one sample is much more problematic as it consists of a
vector containing 127 values. In the case of this measurement, the last 29 samples
have been collected correctly without interruption which is good to provide a nice
representation of the raw ECG signal as shown in the figure (7.25).
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Figure 7.25: Raw ECG signal #6 displayed by the ThingSpeak web interface

The ECG signal and pulse plots provided by the ThingSpeak web interface (7.25) are
custom visualizations obtained by writing specific MATLAB scripts decoding the ECG
vector data. This means that the received frames of chars are first URL decoded,
then expressed in the UTF-8 format, converted into uint8 numbers and the amplitude
of the recovered signal is finally normalized with respect to its maximal value. The
zoom on a single pulse is done by focusing on a high frequency peak located in the
middle of the measured data.

A comparison on the quality of the received signal with respect to the original one is
done in the §9.2. To see if the received signal would produce the same ECG results
than the original one, it is also passed through the full MATLAB signal processing
chain as described in §6.4.
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One of the main goal of this Master thesis is to see the impact of the Mbed hardware
abstraction layer (HAL) onto the system and its development. This is done based
on the analysis of quantitative data measured directly in the code in a static way, but
also dynamically onto the hardware running it.

The peripheral drivers are implemented using two distinct approaches. The first one
consists of implementing them at the lowest possible level, by interacting directly with
the hardware registers; these are called bare metal or target specific drivers for the
Stm32 platform. The second approach consists of implementing them at a higher
level of abstraction using the Mbed HAL to be target agnostic (cf. §3.2).

These two approaches allow to see what are the pros and cons of using or not
the Mbed HAL. A profiling of the system is done by comparing both implementation
techniques with static and dynamic performance criteria that are:

• Static code metrics
The number of code lines, the number of function calls, the size of the program
code in FLASH memory, the size of the used RAM memory for initialized data,
as well as uninitialized data within the memory for dynamic memory allocation

• Dynamic execution metrics
The average and maximum task execution time and CPU utilization percentage

8.1 Static code metrics analysis
Within the ARM processor of the embedded system, there are various memory
areas. The comparison of their level of utilization when the Mbed HAL is used or
not provides some information on the memory footprint of the Mbed HAL. A detailed
representation of it is given in the table (8.1).

Mbed HAL
used

Number of
text lines

Number of
code lines

“text”
in bytes

“data”
in bytes

“bss”
in bytes

“dec”
in bytes

yes 29’358 20’855 135’600 18’064 68’424 222’088
no 27’792 19’878 134’328 16’688 68’464 219’480

difference 1’566 977 1’272 1’376 -40 2’608

Table 8.1: Comparison of static code metrics with or without the Mbed HAL

The table (8.1) contains the information about the number of lines of text and code.
The difference between the two is that the number of code lines simply ignores all
lines that are comments (in C they can be identified with the tags // or /* */). The
counting of the number of text and code lines stops when the code in source files
(.c/.cpp and .h) is hardware specific; meaning when the Stm32 Low-Level layer or the
Mbed HAL layer contents is accessed. At that point, the code is hardware specific
and is the same for both cases, which would not provide additional information.
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The difference with regards to the number of code lines between both
implementations is of 977. Therefore, there is 4.9% more lines of code when the
Mbed HAL is used. This is normal as an extra software layer is added between the
application and the low-level drivers. Regarding the size of the generated C code,
the impact of the Mbed HAL remains minimal in this case.

The table (8.1) is made of three distinct memory sections. The first one that is stored
in FLASH is called “text”. This is where the program code containing the instructions,
the constant data and the interrupt vector table is stored.

The second memory section that is stored in RAM is called “data”. This is where
the initialized data are stored. Nevertheless, their constant initialization values are
stored in FLASH. In the start-up code, a copy of their initial values from FLASH to
RAM is done. This means that the data for such variables is counted twice; once in
RAM and once in FLASH. However, it is not counted within the “text” section.

The third memory section that is stored in RAM is called “bss”. It means Block
Started by Symbol and this is where the uninitialized data are stored. In the start-up
code, the complete bss section is initialized with zeros.

Finally, the “dec” field represents the sum of the three aforementioned memory
sections. The last line of the table (8.1) represents the difference in size between
each sections. Based on these values, it is noticeable that the Mbed HAL has a
minimal impact on the memory footprint. Overall, it adds 2.608 Kbytes of data which
represents 1.19% of additional data to handle and store. It is also interesting to see
that for the uninitialized data section, a bit less data are present when the Mbed HAL
is used.

In §4.1.1, it is stated that there are 2 Mbytes of FLASH and 512 Kbytes of RAM
memory that are available. Based on the data from the table (8.1), only

135′600

2′000′000
· 100 = 6.78% of the FLASH memory and

86′488

512′000
· 100 = 16.89% of the RAM memory (8.1)

are used when the Mbed HAL is present (this can be seen as the worst case
scenario).

By looking at the generated C code for the full model, it is already important to
highlight the fact that the C code for all variants within the model are generated.
Indeed, it is only at the compilation or binding time that the desired variants are
kept and others are removed for the generation of the binary files for deployment.
This procedure is called derivation or instantiation in the product line engineering
approach.

Based on the static code metrics analysis done in this section, it is clear that the
usage of the Mbed HAL has an impact on the generated C code and its usage on
the FLASH and RAM memories. Nevertheless, this impact is rather low for this
electrocardiogram (ECG) application, which is an advantage when it comes to do
rapid prototyping.
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8.2 Dynamic execution metrics analysis
In this project, there is one main task, running at 510 Hz, handling the execution
of the signal processing algorithm that continuously processes the incoming ECG
signal. When the processed data are sent over an Ethernet network, other tasks
are also executed. Therefore, the dynamic profiling focuses on all these tasks and
their utilization of the processor. These two characteristics allow to see how much
overhead is present when the Mbed HAL is used.

The profiling of the running code helps to determine if the generated code meets
the execution time requirements of the developed application when it is deployed
onto a real-time embedded system. It also provides inputs on code sections that
could potentially require some execution speed improvements. This type of run-time
profiling is generally done in External/Processor-In-the-Loop mode.

Function
executed

Mbed
HAL
used

Maximum
execution
time in µs

Average
execution
time in µs

Maximum
% CPU

utilization

Average
% CPU

utilization

# of
function

call

initialize yes 196.0 196.0 - - 1
at the start no 181.0 181.0 - - 1

terminate yes 6.0 6.0 - - 1
at the end no 6.0 6.0 - - 1

step task 0 yes 10.0 6.6 1.020 0.674 144
at 1020Hz no 9.0 6.8 0.918 0.694 240

step task 1 yes 64.0 36.1 3.264 1.839 73
at 510Hz no 37.0 32.0 1.887 1.630 121

step task 2 yes 5.0 4.4 0.064 0.056 20
at 127.5Hz no 5.0 4.1 0.064 0.052 32

step task 3 yes 34.0 34.0 0.003 0.003 1
at 1Hz no 34.0 34.0 0.003 0.003 1

total CPU yes 113.0 81.1 4.351 2.572 -
utilization no 85.0 76.9 2.872 2.379 -

Table 8.2: Comparison of dynamic execution metrics with or without the Mbed HAL

Out of the profiling data gathered in the table (8.2), it is already good to see that
when the Mbed HAL is used at both ends of the signal processing algorithm, the
maximum utilization percentage of the CPU is of less than 4.5%. This means, that
even if the Mbed HAL is used, there are still more than enough processing power
available to run other tasks that would be much more demanding, like a human
machine interface (HMI) or a graphical display for example. Moreover, running a
real-time operating system (RTOS) like Mbed OS (cf.§3.1) would be possible as well.
The CPU utilization corresponds to the relative amount of time or percentage of CPU
time assigned to one task. Its value is computed by dividing the task execution time
by the sample time (which is the inverse of the sampling frequency FS (cf.(6.1)).
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On the other hand, it is noticeable that the usage of the Mbed HAL does add some
overhead on the task execution time with regards to the direct low-level Stm32
implementation. This overhead τO (8.2) can be quantified for the worst case scenario
which is the sum of the maximum execution time of all four step functions with the
Mbed HAL, minus the sum of the maximum execution time of all four step functions
without the Mbed HAL.

τo =
3∑

k=0

τMbed
k −

3∑
k=0

τStm32
k = (10 + 64 + 5 + 34)− (9 + 37 + 5 + 34) = 113− 85

= 28 µs (8.2)

At the end, the computed overhead (8.2) is normal and such results were expected.
Nevertheless, the usage of the Mbed HAL has a non-negligible impact on the
processor utilization. The additional utilization Uadd it overall takes is given by the
expression (8.3).

Uadd =

(
1− 85

113

)
· 100 = 24.78% (8.3)

This means that the usage of the Mbed HAL adds a task’s execution overhead of
one fourth with regards to the Stm32 low-level implementation. When it comes to
do rapid prototyping on a portion of a complex system, or on an application like
this ECG processing, it is fine. At this stage, there would be no direct need to
migrate from the Mbed HAL to the low-level Stm32 implementation. However, if
other software components are going to be part of the system, this 25% overhead
can be problematic and should not be ignored. For the end users such information
is very important, as they are aware that there is still some room for optimization if
required later in the development phase of the final production product.

In the C code generation process, three main tasks or functions are always created:
the initialize(), terminate() and step() functions. By looking a bit more to the details of
the table (8.2), the initialize() and terminate() functions can be easily identified and
are executed only once, respectively at the beginning and the end of the program
execution. The step() function is divided into four separate tasks called “step0”,
“step1”, “step2” and “step3” working at different sampling rates that are respectively
of 1’020, 510, 127.5 and 1 Hz. This means that this is a multirate system. Indeed, this
is one of the most important advantage of Simulink to be able to manage multiple
rates within the same system. In this ECG application, the multirate subsystems
are mainly located in the “Network” variant subsystem, and especially in its “IoT”
implementation for the communication with ThingSpeak.

Simulink allows to highlight the different rates present in a model as shown in the
IoT subsystem (8.1). The step0 task runs at the base rate of 1’020 Hz and is the
scheduler task of the system. Indeed, it is the greatest common denominator among
all the other tasks, or in other words, it has the fastest sampling rate of the model. The
step1 task runs at the main rate of the model which is of 510 Hz as defined in (6.1)
and is highlighted in green. After the downsample block, the sampling frequency is
reduced by a factor of 4 to reach 127.5 Hz and is highlighted in blue.
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Figure 8.1: Multirates within the IoT subsystem

After the buffer block, the sampling frequency reaches 1 Hz as 127 data samples are
stacked together. This frequency is highlighted in cyan. Finally, the data are sent
to the ThingSpeak channel at a rate a bit smaller than 1 Hz to take the time jittering
(7.2) into account. Its sampling frequency is highlighted in olive.

The yellow blocks handle multiple rates at the same time. For example, the rate
transition blocks (RTBs) help to transition from one sampling rate to another via
various mechanisms like semaphores, unit delay, double or triple buffers and so on.
One or the other method is selected based on the activation or not of two parameters
called “Data integrity” and “Deterministic data transfer”.

8.3 Discussion on profiling results
By looking at the static and dynamic profiling metrics, the first observation that stands
out is that the resources provided by the STM32 board and their characteristics
described in §4.1.1 are accessed and used with parsimony even when the Mbed
HAL is present. According to the memory consumption values (8.1), less than 7%
of the FLASH and less than 17% of the RAM are used. Moreover, the overall CPU
utilization is, in the worst case scenario, of less than 4.5% according to the table
(8.2). This allows the end users to quickly develop a prototype of the multirate system
without fiddling around with what is hardware specific and abstracting it with the
Mbed HAL. This has the advantage of increasing the productivity in the development
of such products.

The generated code is efficient, because the algorithm has been designed following
a step-by-step approach starting from its initial investigation defining its structure
and parameters with the help of simulation up to its integration with the embedded
system. Moreover, at the integration phase, code replacements libraries (CRLs) are
used to take advantage of the specific ARM Cortex-M architecture and optimize the
generated C code.
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9 Results Analysis

The aim of this chapter is to focus on the accuracy of the produced results and their
consistency thorough the various development steps. It is of paramount importance
to be able to compare the obtained results once the code is deployed onto the
embedded system with the simulation and reference results.

As the produced data are sent over a local network or on the Internet, it is also key
to ensure that the received data are correct and can be reused for further processing
remotely (onto a desktop computer or in the cloud).

9.1 Comparison of numerical results
In this project, the verification and validation of the application is done via the
analysis of the produced numerical results based on defined test signals. The
idea is to ensure that the numerical results, out of the electrocardiogram (ECG)
measurements, are similar for the different implementations that have been created
thorough the development process.

In practice, this is not enough to prove that the deployed algorithm works correctly.
Indeed, model and code coverage as well as a static analysis of the model and code
must be done to ensure that the control and data flows are correct. Moreover, some
checks at the model and code levels are requested by safety standards, like the IEC
62304 standard mentioned in §2.2. On top of that, a full bi-directional traceability
among the requirements, model and code is required. In this project, the product’s
requirements have not been formally authored and cannot be traced as such. All the
aforementioned verification and validation steps have not been done in this project
as it would have requested much more time than what is available to do it.

IDECG Count Watch MATLAB Simulink External Standalone ∆ECG

1 92 91 91±6 90±5 90±5 90±5 2
2 70 69 70±5 69±5 69±5 69±5 1
3 70 71 71±5 70±5 70±5 70±5 1
4 68 67 68±6 67±5 67±5 67±5 1
5 70 71 71±6 70±5 70±5 70±5 1
6 56 56 56±5 56±5 56±5 56±5 0
7 90 90 92±19 91±9 92±7 92±7 2
8 70 70 71±5 70±5 70±5 70±5 1
9 99 99 100±8 100±7 100±7 100±7 1

10 78 78 79±5 78±3 78±3 78±3 1

Table 9.1: Comparison of numerical results among all implementations

In the numerical results table (9.1), there is a comparison of the beats per minutes
(BPM) results for each ten ECG signals. The manually counted ECG pulses as well
as the BPM results produced by the smart watch are taken as reference values.

September 20, 2021 84/95 Master Thesis.pdf



9 Results Analysis

The results produced by all three implemented algorithms (in MATLAB, Simulink and
STM Nucleo deployment) must be verified so that the application can be validated.
This is requested by the IEC 62304 standard. This is called “back to back testing”.

The first observation out of the numerical results table (9.1) is that the obtained BPM
values are similar. For the ECG signal #6, the results are even fully identical. The
maximal delta, with respect to the reference count value, that is provided on the right-
hand side of the table shows that the maximal variation that can be observed is of 2
BPMs. This happens for the ECG signals #1 and #7 that have quite some noise and
glitches in them to test the robustness of the signal processing algorithm (6.5).

The fact that there are very little variations between the results in MATLAB, Simulink
and the STM Nucleo deployment is normal. Indeed, in all these cases, going from
one representation to another is not a one to one transition. For example, in the
MATLAB implementation, the processing of the data is done at once on the ECG
frame/vector signal. Whereas, in the Simulink simulation, the processing of the data
is done sample by sample one after the other at each simulation step. When it comes
to the implementation of the deployment model, it works similarly to the simulation
model, but this time the connectivity with hardware peripherals must be handled with
or without the Mbed hardware abstraction layer (HAL). For example, in the case of
the signal acquisition via the hardware ADC, the resolution of one sample is of 12
bits and not 64 bits like for a double in simulation mode. This adds some noise and
inaccuracy to the signal.

Based on these observations, the results from the table (9.1) proves that the signal
processing algorithm (6.5) has been designed correctly. The standard deviation
or uncertainty on the results is an indicator of the signals quality; the smaller the
deviation the better the signal quality. This table summarizes the results obtained
at the end of each measurement, when the valid flag is true. However, it does
not provide any information about how the BPM mean and standard deviation are
evolving during the measurement and its processing to converge to its final value.

In the MATLAB implementation, frame-based processing is done over all samples at
once, so the evolution of the measurement and its processing cannot be observed.
However, when it comes to the Simulink implementation for simulation and the
STM Nucleo deployment, sample-based processing is done and the BPM result is
updated after each new sample basically. Simulink models can be instrumented to
measure and log signals on-the-fly at various places inside the signal processing
algorithm (6.5). This has been done for the ten ECG signals in simulation, external
and standalone deployment modes. The results of the BPM mean and standard
deviation can be observed in the figures (9.1) for the ECG signals #1 to #5 and (9.2)
for the ECG signals #6 to #10.

In simulation mode, the triggering of the reset event can be automated and repeated
in a deterministic way. There are ways to do it in external mode as well. However, for
the standalone deployment mode, the end user must physically press on the reset
button to trigger a reset event. This implies that there is some jittering on the time
axis and that the signals are not perfectly aligned from one run to the other.
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Figure 9.1: Simulation vs deployment modes results for the ECG signals #1 to #5

In the results of the figure (9.1), the green and red dashed lines represent
respectively the BPM mean and standard deviation measured in deployment mode
onto the hardware. Indeed, the external and standalone deployment modes runs do
produce exactly the same numerical results. That is why the comparison results are
not repeated for these two modes and is simply referred to as deployment mode. The
orange and blue lines represent respectively the BPM mean and standard deviation
measured in simulation mode on the desktop computer. Even if there is a bit of time
jittering, it is obvious that the simulation and deployment modes produce exactly the
same numerical results which confirms that the generated C code for the embedded
system behaves the same way than the simulation model.

In the results of the figure (9.2), the color coding of the signals is exactly the same
than in the figure (9.1). Here again the remaining signals produce exactly the same
numerical results in both modes, except for the ECG signal #7. The two gray
rectangles highlight the difference of results between the two implementations. The
explanation of this variation during the evolution of the results comes from the fact
that the raw ECG signal #7 has a lot of noise as already mentioned in §9.1. In
deployment mode, the ADC also adds some extra noise that is not present in the
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simulation mode. As there are some rounding blocks in the algorithm, it can be that
at one specific point in time, because of the accumulation of noise, one signal is then
rounded towards the next upper value instead of the lower value as it is supposed to.
By looking at the two gray rectangles, this is exactly what happens just before 300
seconds of time.

Figure 9.2: Simulation vs deployment modes results for the ECG signals #6 to #10

It is mentioned previously that the external and standalone deployment modes are
referred to as deployment mode because both produce exactly the same numerical
results. The only difference between the two is how signals are logged. In the
external mode case, the Simulink model is instrumented to log signals onto the target
and send them to the desktop computer via XCP as explained in §6.6.2.

In the standalone mode case, the Simulink model is not instrumented to log signals
onto the target, but is connected to a local Ethernet network via UDP or TCP/IP as
explained in §7.4.1. Therefore, it is needed to receive and decode the sent data
packets from the embedded system. The Simulink model (9.3) has been created to
get Ethernet data packets. The “Network” variant subsystem allows to select either
the UDP or TCP/IP communication’s protocol. Then, the received packets just need
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to be unpack correctly to retrieve and display the logged signals.

Figure 9.3: Simulink model to gather Ethernet data coming from the embedded system

In this section, the distinction between the STM32 low-level and the Mbed HAL
implementations has not been done because in both cases, the produced numerical
results are exactly the same. This was expected, as the way drivers are written
should not affect the data.

9.2 ThingSpeak data compression
When it comes to send data to the ThingSpeak cloud, they must be compressed
to fulfill the ThingSpeak’s data requirements detailed in §7.4.2. Obviously when
there is data compression, this means that there will be a loss of data precision
and resolution. In this section, the goal is to see the impact of this data compression
and if the received data are still usable for further processing.
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The graph (9.4) compares the original and the ThingSpeak received ECG signal
#6. Basically, compressed data have been sent from the Stm32 board running in
standalone mode via a ThingSpeak communication’s channel. The data have been
decoded with a MATLAB script and stored in a MATLAB Executable (MAT) data file
to be compared against the original ECG signal.

The first observation is that both signals are aligned in the time domain as shown with
the green rectangle. As explained at the end of the §7.4.2, if a data packet arrives
too late in the ThingSpeak cloud, it is rejected. That is why it is not always guaranteed
to receive all the sent data on the operational technology node. Moreover, the time
jittering can also interfere with the time alignment. Therefore, it is not especially easy
to align the received signal with its original one in the time domain.

Regarding the amplitude values, it can be seen that they are not exactly the same.
For the high frequency peaks, they are almost always the same. For the low
frequency ones, they follow the same trend, but are overall a bit smaller. This is
due to the fact that only one sample every four is sent, so if the top of one peak is not
sent, this results in a loss of amplitude’s dynamic. The fact that the resolution of the
samples goes from 4096 to 127 values, as shown in the expression (7.1), reduces
the small signal’s oscillations as well.

Overall, the shape of the sent signal is preserved which is the most important if it is
requested to do further processing on the data in the cloud.

Figure 9.4: Comparison between the original and the ThingSpeak received ECG signal #6

By zooming on the highlighted green pulses as in the figure (9.5), it is easier to see
to what extend the original and the ThingSpeak received ECG signals are similar.
The shape and the amplitude of the received signal are well preserved even after
such a compression of the data.

Based on these observations, it is then possible to pass this compressed signal
through the signal processing algorithm in MATLAB, described in §6.4, to see if the
computed BPM result is the same than the one obtained with the original ECG signal
#6 (6.13). As the BPM result of the ThingSpeak received ECG signal #6 (9.6) is
the same than the one obtained with the original one, which is of 56±5 BPM, this
demonstrates that it is working as expected.
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Figure 9.5: Comparison between the original and the ThingSpeak ECG pulse at 11 seconds

Figure 9.6: BPM results of the ThingSpeak received ECG signal #6

To be able to obtain the BPM result from the received ThingSpeak signal (9.6), a
parameter had to be modified in the signal processing algorithm. Indeed, as the
sampling frequency of the signal went down by a factor of 4 to reach 127.5 Hz, this
means that the Nyquist criteria mentioned in §6.2.2 must also go down up to 127.5/2
= 63.75 Hz. The only parameter that has a value greater than 63.75 Hz is the second
cut-off frequency of the Bandpass Butterworth filter defined in the filters parameters
table (6.1) that has a value of 100 Hz. To respect the Nyquist criteria, this cut-off
frequency #2 is then saturated at 63.75 Hz.
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An important aspect of this Master thesis has been to use techniques that allow
to abstract complex implementation’s tasks from the engineer’s view points. It has
the advantages of focusing on the development of the algorithm itself rather than
on how to program it and to make the engineer more productive. Indeed, one of
the main point to highlight in this project has been that it was possible to quickly
modify parts of the algorithm and directly test it onto the hardware. Then, if one
error or wrong behavior was detected, it was straight forward to adapt the simulation
model accordingly to reproduce the observed behavior and correct it in the simulation
model. The abstraction of complexity made it easier to go back and forth between
the deployment model and its corresponding simulation model.

The abstraction of complexity has been done at three different levels. The first
one was to follow a Model-Based Design (MBD) approach by using MATLAB and
Simulink. A first investigation of a possible signal processing algorithm has been
done in MATLAB, before being implemented as a simulation model in Simulink. After
getting satisfying results out of it, a deployment model has been created taking into
account the hardware peripherals from the embedded target. Following a product
line engineering approach, the reuse of developed components has been done from
one model to the other, as well as the usage of variants to make the selection of
peripheral drivers easily flexible. In this case, variants have been used to implement
various communications protocol for an Internet of things (IoT) application and also
to use or not the Mbed hardware abstraction layer (HAL).

The second layer of abstraction was to implement and support the Mbed HAL
via Simulink. This Mbed HAL is an initiative from ARM to allow engineers to
program multiple ARM Cortex-M targets by reusing the same application’s code
without having to re-adapt the low-level drivers. It also aims at simplifying the
rapid prototyping of IoT applications. In this project, the focus has been put on the
Mbed HAL to connect to hardware peripherals. An Mbed real-time operating system
(RTOS) is also provided by ARM, but was not used in this project because it would
have taken to much time to have it supported in Simulink. The implementation of the
Mbed HAL for the peripherals drivers was done by using the MATLAB system objects
technology which has the flexibility of mixing MATLAB and C/C++ codes together. It
also has the advantage of removing the implementation’s complexity of doing all in
C code only, like creating the C wrapper code for example.

The third layer of abstraction was to use the automatic C/C++ code generation
capability out the Simulink models for deployment. One of the main advantage of it
was the time it took to generate code. In average, it took one minute to generate
more than 20’000 lines of code, compile, link and deploy them onto the target.
Regarding flexibility and productivity, this had an important impact during the rapid
prototyping phase. Moreover, the generated code was optimized for ARM Cortex-M
based processor by using code replacements libraries (CRLs) to take advantage of
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the specific ARM Cortex-M architecture. It can be that an engineer could even more
optimized the code manually, but is it worth the effort? Here, the Pareto principle can
be mentioned. Indeed the engineer would spend 20% of the effort to create a model
and generate code that is already 80% efficient. Does it make sense to spend 80%
more effort to only gain 20% more efficiency, for example to reduce the number of
code lines or some RAM memory space? My personal opinion is that it is not worth
such an effort as today the embedded targets have a lot of available resources.

An important aspect of this Master thesis was the usage of the Mbed HAL and what
it could offer. Based on the work done in this project, the first advantage it provides is
the abstraction of the hardware complexity. A very good example of it is the control of
the analog-to-digital converter (ADC) peripheral. This peripheral has multiple modes
of operation, but when it is used via the Mbed HAL, only one of them is used and
must be implemented, which significantly simplifies its implementation and its usage
as well. Another advantage is that the produced code that is added when the Mbed
HAL is used remains relatively low; it does not impact a lot the number of code
lines and the memory footprint. However, it impacts the task execution time and
the utilization of the CPU to some extends, so this is a side effect to keep in mind
once the prototyping phase is over and the product enters its development phase for
production.

An other objective was to be able to send data from the embedded system or the
edge node over a local Ethernet network or to the cloud via the Internet in real-time.
This is actually the first mega-trend within the medical devices industry that is called
the Internet of medical things (IoMT). An achievement that can be highlighted is the
creation of a MATLAB system objects that is able to send scalar and vector data
every second from the edge node to the operational node in the cloud via the setup
of a ThingSpeak communication’s channel. Indeed, this is the very first subsystem in
Simulink being able to do this. It will be officially released with the release R2022a in
April 2022. Even if the electrocardiogram (ECG) data had to be compressed before
being sent to the cloud, they could be decoded and passed through the original
signal processing algorithm in MATLAB and right results were obtained confirming
that the sending of compressed vector data works correctly.

An analysis of the numerical results as well as a profiling of the static and dynamic
metrics has been done to confirm that what was achieved after the various phases
of the development workflow produced correct and acceptable results as this is
requested by the IEC 62304 standard in the medical devices industry. Based on
these analysis, it has been confirmed that the numerical results among the various
phases produced similar results. Moreover, the impact of the Mbed HAL could be
quantified by quantitative metrics so that an objective discussion could take place on
the pros and cons of its usage.

On the MathWorks side, this project had an impact internally as well. The end
result is that this project is going to be reused as a tool shipping demo that will
be available within MATLAB in the release R2022a. The Mbed implementation as
well as the ThingSpeak IoT communication will be there as an example of utilization
for customers. Another project that arises from this is the creation of one dedicated
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Mbed hardware support package (HSP) with capabilities to program more than 150
processors and boards through Mbed following a model-based design approach.
That is really gratifying to see that such a project will continue to grow at MathWorks
and be available to our customers. Moreover, some extension’s work could be added
to this Master thesis, like the added of the Mbed OS support for example.

Finally, this Master thesis was an intense journey with a broad set of topics to cover,
to get familiar with and to put in application in order to present what has been learned
in the last six months in a clear and concise way.

11 Annex

All project’s files allowing the redaction of this Master thesis can be found online
at the following OneDrive location: MbedProject. Only people having this link can
access the related documents.
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